Scientists Synthesized a Yellow Fever Drug Suggested by AI

Yellow fever is a deadly disease in overpopulated tropical regions of Africa and South America. Infected people have a temperature increase to 39-41°C, chills, severe headache, nausea, and vomiting. The patient’s face becomes dull, the eyelids swell and the skin turns yellow due to liver damage (hence the name of the disease). Before the yellow fever vaccine was developed, the infection claimed thousands of lives for example in 1871, 8 percent of the population of Buenos Aires died in the epidemic. In mosquito-infested areas, where the vaccination is not readily available to the majority of the population, outbreaks of infection still occur. The yellow fever virus, as well as its related flaviviruses causing Zika and Dengue fever, is treated only by symptomatic treatment, as there are no specific drugs. An international team of scientists used artificial intelligence to select from a vast array of molecules that might be suitable for this purpose. Scientists from the Research Centre of Biotechnology of the Russian Academy of Sciences developed the technology and purchased or synthesized five of the most promising compounds and investigated their activity. The research was conducted in cooperation with Collaborations Pharmaceuticals, Inc. a private company specializing in innovative therapeutics for multiple rare and infectious diseases (based in the USA), São Carlos Institute of Physics, University of São Paulo (Brazil) along with support from the NIH, NIAID (USA).

"Our team used a predictive computer model in combination with several machine learning methods. For model training, we relied on in vitro screening data and information available in existing databases to select identify the ideal molecule features for desired activity. With the help of these computational models we predicted their bioactivity before testing them in vitro using NIAID resources," - explains Vadim Makarov, the co-author, Dr.Sci. (Pharmacy), the head of the Laboratory for Biomedicinal Chemistry of Research Centre of Biotechnology RAS.

Typically, only one of the 5,000 molecules that survived experimental testing is given a chance to reach the pharmacy counter. Others are too toxic, hard to produce, disintegrate in the body, or show too little activity in the real body compared to the test tube. Selection is even more rigorous before the experiments. Even if you focus on the hundreds of thousands of molecules that are known to science that are used or used to treat something else, testing them all not the same on animals and humans, but even in vitro would be almost infinite. To make the first stages of experiments cheaper and faster, scientists use computer simulations and try to convert some of the initial tests into virtual ones. In the next stage, they are also assisted by high-throughput screening, during which "the robot dispenser" automatically dispenses tiny amounts of active substances into the microplates that contain cells infected with virus. The researcher then evaluates which compounds kill the virus.

The authors of the paper created computer models that can self-learn, comparing chemical compounds according to certain structural rules. Machine learning requires as much basic information from molecules wit or without activity as possible. For this purpose, scientists took information from public databases on small medicinal molecules and studied scientific publications on yellow fever virus research on cells. The models helped propose five of the most promising molecules that would fight the virus in human cells. Scientists have then tested these molecules and found the optimal concentration at which they should work. For the most efficient substance, the half-maximal effective concentration was 3.2 uM (equal to one mole of active substance per liter).

"The molecule we choose relates to the derivatives of pyrazosulphonamide. Its activity with the yellow fever virus is so great that we can talk about a potential drug. The structure of this molecule provides ample opportunity for further modification, which could greatly expand the list of potentially affordable yellow fever drugs. If the tests are successful, we will receive an entirely new group of drugs to fight this dangerous disease," - says Vadim Makarov.

Gawriljuk VO, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS, Oliva G, Ekins S.
Development of Machine Learning Models and the Discovery of a New Antiviral Compound against Yellow Fever Virus.
J Chem Inf Model. 2021 Aug 23;61(8):3804-3813. doi: 10.1021/acs.jcim.1c00460

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...