New Computer Modelling could Boost Drug Discovery

Scientists from Queen's University Belfast have developed a computer-aided data tool that could improve treatment for a range of illnesses.

The computer modelling tool will predict novel sites of binding for potential drugs that are more selective, leading to more effective drug targeting, increasing therapeutic efficacy and reducing side effects.

The data tool or protocol will uncover a novel class of compounds - allosteric drugs in G protein-coupled receptors (GPCRs).

GPCRs are the largest membrane protein family that transduce a signal inside cells from hormones, neurotransmitters, and other endogenous molecules. As a result of their broad influence on human physiology, GPCRs are drug targets in many therapeutic areas such as inflammation, infertility, metabolic and neurological disorders, viral infections and cancer. Currently over a third of drugs act via GPCRs. Despite the substantial therapeutic success, the discovery of GPCR drugs is challenging due to promiscuous binding and subsequent side effects.

Recent studies point to the existence of other binding sites, called allosteric sites that drugs can bind to and provide several therapeutic benefits. However, the discovery of allosteric sites and drugs has been mostly serendipitous. Recent X-ray crystallography, that determines the atomic and molecular structure, and cryo-electron microscopy that offers 3D models of several GPCRs offer opportunities to develop computer-aided methodologies to search for allosteric sites.

The researchers developed a computer-aided protocol to map allosteric sites in GPCRs with a view to start rational search of allosteric drugs, presenting the opportunity for new solutions and therapies for a range of diseases.

Dr Irina Tikhonova from the School of Pharmacy at Queen’s University and senior author, explains: “We have developed a novel, cost-effective and rapid pipeline for the discovery of GPCRs allosteric sites, which overcomes the limitations of current computational protocols such as membrane distortion and non-specific binding.

"Our pipeline can identify allosteric sites in a short time, which makes it suitable for industry settings. As such, our pipeline is a feasible solution to initiate structure-based search of allosteric drugs for any membrane-bound drug targets that have an impact on cancer, inflammation, and CNS diseases."

This research published in ACS Central Science is a collaboration with Queen's University Belfast and Queen Mary University of London. It is supported by the European Union ’s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grants agreement and Biotechnology and Biological Science Research Council.

Antonella Ciancetta, Amandeep Kaur Gill, Tianyi Ding, Dmitry S Karlov, George Chalhoub, Peter J McCormick, Irina G Tikhonova.
Probe Confined Dynamic Mapping for G Protein-Coupled Receptor Allosteric Site Prediction.
ACS Cent. Sci. 2021. doi: 10.1021/acscentsci.1c00802

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...