Innovative AI Technology Aids Personalized Care for Diabetes Patients Needing Complex Drug Treatment

Hitachi, Ltd. (TSE: 6501, Hitachi), University of Utah Health (U of U Health), and Regenstrief Institute, Inc. (Regenstrief) announced the development of an AI method to improve care for patients with type 2 diabetes mellitus who need complex treatment. One in 10 adults worldwide have been diagnosed with type 2 diabetes, but a smaller number require multiple medications to control blood glucose levels and avoid serious complications, such as loss of vision and kidney disease.

For this smaller group of patients, physicians may have limited clinical decision-making experience or evidence-based guidance for choosing drug combinations. The solution is to expand the number of patients to support development of general principles to guide decision-making. Combining patient data from multiple healthcare institutions, however, requires deep expertise in artificial intelligence (AI) and wide-ranging experience in developing machine learning models using sensitive and complex healthcare data.

Hitachi, U of U Health, and Regenstrief researchers partnered to develop and test a new AI method that analyzed electronic health record data across Utah and Indiana and learned generalizable treatment patterns of type 2 diabetes patients with similar characteristics. Those patterns can now be used to help determine an optimal drug regimen for a specific patient.

Some of the results of this study are published in the peer-reviewed medical journal, Journal of Biomedical Informatics, in the article, "Predicting pharmacotherapeutic outcomes for type 2 diabetes: An evaluation of three approaches to leveraging electronic health record data from multiple sources."

Hitachi had been working with U of U Health for several years on development of a pharmacotherapy selection system for diabetes treatment. However, the system was not always able to accurately predict more complex and less prevalent treatment patterns because it did not have enough data. In addition, it was not easy to use data from multiple facilities, as it was necessary to account for differences in patient disease states and therapeutic drugs prescribed among facilities and regions. To address these challenges, the project partnered with Regenstrief to enrich the data it was working with.

The new AI method initially groups patients with similar disease states and then analyzes their treatment patterns and clinical outcomes. It then matches the patient of interest to the disease state groups and predicts the range of potential outcomes for the patient depending on various treatment options. The researchers evaluated how well the method worked in predicting successful outcomes given drug regimens administered to patient with diabetes in Utah and Indiana. The algorithm was able to support medication selection for more than 83 percent of patients, even when two or more medications were used together.

In the future, the research team expects to help patients with diabetes who require complex treatment in checking the efficacy of various drug combinations and then, with their doctors, deciding on a treatment plan that is right for them. This will lead not only to better management of diabetes but increased patient engagement, compliance, and quality of life.

The three parties will continue to evaluate and improve the effectiveness of the new AI method and contribute to future patient care through further research in healthcare informatics.

Hitachi will accelerate efforts, including the practical application of this technology through collaboration between its healthcare and IT business divisions and R&D group. GlobalLogic Inc., a Hitachi Group Company and leader in Digital Engineering, is promoting healthcare-related projects in the U.S., will also deepen the collaboration in this field. Through these efforts, the entire Hitachi group will contribute to the health and safety of people.

Tarumi S, Takeuchi W, Qi R, Ning X, Ruppert L, Ban H, Robertson DH, Schleyer TK, Kawamoto K.
Predicting pharmacotherapeutic outcomes for type 2 diabetes: An evaluation of three approaches to leveraging electronic health record data from multiple sources.
J Biomed Inform. 2022 Jan 28:104001. doi: 10.1016/j.jbi.2022.104001

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...