AI-Enabled ECGs may Identify Patients at Greater Risk of Stroke, Cognitive Decline

Atrial fibrillation, the most common cardiac rhythm abnormality, has been linked to one-third of ischemic strokes, the most common type of stroke. But atrial fibrillation is underdiagnosed, partly because many patients are asymptomatic.

Artificial intelligence-enabled electrocardiography (ECG) was recently shown to identify the presence of brief episodes of atrial fibrillation, and the ability of an AI-enabled ECG algorithm to predict atrial fibrillation up to 10 years before clinical diagnosis has been confirmed in a population-based study conducted by Mayo Clinic researchers.

A new population-based study from Mayo Clinic now offers evidence that the algorithm can help identify patients at greater risk of cognitive decline. AI-enabled ECG that shows high probability of atrial fibrillation also was associated with the presence of infarctions, or incidents of cerebral stroke, on MRI, according to the study.

The study is described in an article, "Artificial Intelligence-Enabled Electrocardiogram for Atrial Fibrillation Identifies Cognitive Decline Risk and Cerebral Infarcts," which is published in Mayo Clinic Proceedings.

Most of the infarctions observed were subcortical, meaning that they occurred in the region of the brain below the cortex. This suggests that AI-enabled ECG not only predicts atrial fibrillation, but also detects other cardiac disease markers and correlates with small vessel cerebrovascular disease and cognitive decline.

"This study finds that artificial intelligence-enabled electrocardiography acquired during normal sinus rhythm was associated with worse baseline cognition and gradual decline in global cognition and attention," says Jonathan Graff-Radford, M.D., a Mayo Clinic neurologist and the study's corresponding author. "The findings raise the question whether initiation of anticoagulation is an effective and safe preventive strategy in individuals with a high AI-ECG algorithm score for reducing the risk of stroke and cognitive decline."

Prospective controlled studies are needed to determine whether a high atrial fibrillation score on an AI-enabled electrocardiogram could be a biomarker to identify patients for anticoagulation or more aggressive stroke risk factor modification, Dr. Graff-Radford says.

The retrospective study reviewed sinus-rhythm ECG of 3,729 patients with a median age of 74 years who were enrolled in the Mayo Clinic Study of Aging between 2004 and 2020. Adjusting for demographic factors, the AI-enabled ECG atrial fibrillation score correlated with lower baseline and faster decline in global cognitive scores. About one-third of the patients who underwent ECG also had an MRI, and high atrial fibrillation probability in the ECG correlated with MRI-detected cerebral infarcts.

"Application of this AI-ECG algorithm may be another way to screen individuals not only to determine risk of atrial fibrillation, but also to identify future risk of cognitive decline and stroke," says Dr. Graff-Radford.

Research reported in the article was supported by grants from the National Institute on Aging and the National Institutes of Health. The study was made possible by the Rochester Epidemiology Project. Potential competing interests are identified in the article. Among the potential competing interests, Peter Noseworthy, M.D., a Mayo Clinic cardiologist, and Mayo Clinic have filed patents related to the application of AI to ECG for diagnosis and risk stratification.

Erika L Weil, Peter A Noseworthy, Camden L Lopez, Alejandro A Rabinstein, Paul A Friedman, Zachi I Attia, Xiaoxi Yao, Konstantinos C Siontis, Walter K Kremers, Georgios Christopoulos, Michelle M Mielke, Prashanthi Vemuri, Clifford R Jack Jr, Bernard J Gersh, Mary M Machulda, David S Knopman, Ronald C Petersen, Jonathan Graff-Radford.
Artificial Intelligence-Enabled Electrocardiogram for Atrial Fibrillation Identifies Cognitive Decline Risk and Cerebral Infarcts.
Mayo Clin Proc. 2022. doi: 10.1016/j.mayocp.2022.01.026

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...