AI Enables Non-Invasive, Accurate Screening for Down Syndrome in the First Trimester

Down Syndrome, also known as Trisomy 21, is the most common chromosomal abnormality causing developmental delay and intellectual disability and can be identified in utero. Many pregnant women seek to determine whether their fetus has this abnormality.

Now researchers from the Institute of Automation of the Chinese Academy of Sciences (CASIA) have developed an intelligent prediction model to achieve non-invasive screening of Down Syndrome using ultrasound image.

This work was published in JAMA Network Open on June 21.

For decades, ultrasound images have been widely used for screening fetuses with Down Syndrome due to the method's safety, convenience, and low cost. However, using common ultrasound indicators, detection accuracy is less than 80% in actual ultrasound examinations.

Invasive methods such as villus biopsy, amniocentesis, and fetal umbilical venipuncture are also commonly used to detect Down Syndrome.

In this study, the researchers developed a convolutional neural network (CNN) to construct a deep learning (DL) model that could learn representative features from ultrasound images in order to identify fetuses with Down Syndrome.

A CNN is a deep learning algorithm that can take an input image, assign importance (i.e., learnable weights and biases) to various aspects/objects within the image and differentiate one from the other. A CNN can have tens or hundreds of hidden layers. The first layer learns how to detect edges and the last one learns how to detect more complex shapes. This research involved 11 hidden layers.

To further interpret the DL model in a human-readable form, the researchers also used a class activation map (CAM) to shed light on what the model focused on and how it explicitly enabled the CNN to learn discriminative features for risk scores.

The researchers used two-dimensional ultrasound images of the midsagittal plane of the fetal face between 11 and 14 weeks of gestation. Each image was segmented with a bounding box to show only the fetal head. The study comprised a total of 822 cases and controls, with 550 participants in the training set and 272 participants in the validation set.

The researchers found that the first five levels of feature maps visualized by CAM vividly showed the process of learning representative features. The CAM applied to the final layer showed the visualized response regions for the model's decision-making.

"This non-invasive screening model constructed for Down Syndrome in early pregnancy is significantly superior to existing, commonly used manual labeling markers, improving prediction accuracy by more than 15%. It's also superior to the current conventional invasive screening method for Down Syndrome based on maternal serum," said TIAN Jie, corresponding author of the study.

The proposed model is expected to become a non-invasive, inexpensive, and convenient screening tool for Down Syndrome in early pregnancy.

The research is supported by the National Natural Science Foundation of China and the Key R&D Program of the Ministry of Science and Technology.

Zhang L, Dong D, Sun Y, Hu C, Sun C, Wu Q, Tian J.
Development and Validation of a Deep Learning Model to Screen for Trisomy 21 During the First Trimester From Nuchal Ultrasonographic Images.
JAMA Netw Open. 2022 Jun 1;5(6):e2217854. doi: 10.1001/jamanetworkopen.2022.17854

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...