Machine Learning Creates Opportunity for New Personalized Therapies

Researchers at the University of Michigan Rogel Cancer Center have developed a computational platform that can predict new and specific metabolic targets in ovarian cancer, suggesting opportunities to develop personalized therapies for patients that are informed by the genetic makeup of their tumors. The study appeared in Nature Metabolism.

Cancer mutations occur frequently in ovarian cancer, giving cells a growth advantage that contributes to the aggressiveness of the disease. But sometimes deletions of certain genes can occur alongside these mutations and make cells vulnerable to treatment. Still, cancer cells grow so well because paralog genes can compensate for this loss of function and continue to drive tumor formation.

Deepak Nagrath, Ph.D., associate professor of biomedical engineering who led this study, wanted to understand more about these compensatory genes as they relate to metabolism. "When a gene is deleted, metabolic genes, which allow the cancer cells to grow, are also deleted. The theory is that vulnerabilities emerge in the metabolism of cancer cells due to specific genetic alterations."

When genes that regulate metabolic function are deleted, cancer cells essentially rewire their metabolism to come up with a backup plan. Using a method that integrates complex metabolic modeling, machine learning and optimization theory in cell-line and mouse models, the team discovered an unexpected function of an ovarian cancer enzyme, MTHFD2. This was specific to ovarian cancer cells with an impairment to the mitochondria, due to a commonly occurring deletion of UQCR11. This led to a critical imbalance of an essential metabolite, NAD+, within the mitochondria.

The algorithm predicted that MTHFD2 surprisingly reversed its role to provide NAD+ in the cells. This created a vulnerability that could be targeted to selectively kill off the cancer cells while minimally affecting healthy cells.

"Personalized therapies like this are becoming an increasing possibility for improving efficacy of first-line cancer treatments," says research fellow and first author of this study Abhinav Achreja, Ph.D. "There are several approaches to discovering personalized targets for cancer, and several platforms predict targets based on big data analyses. Our platform makes predictions by considering the metabolic functionality and mechanism, increasing the chances of success when translating to the clinic."

Achreja A, Yu T, Mittal A et al.
Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer.
Nat Metab 4, 1119-1137, 2022. doi: 10.1038/s42255-022-00636-3

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...