AI Tool Developed to Help Make Real-Time Diagnoses During Surgery

When a patient undergoes a surgical operation to remove a tumor or treat a disease, the course of surgery is often not predetermined. To decide how much tissue needs to be removed, surgeons must know more about the condition they are treating, including a tumor's margins, its stage and whether a lesion is malignant or benign - determinations that often hinge upon collecting, analyzing, and diagnosing a disease while the patient is on the operating table. When surgeons send samples to a pathologist for examination, both speed and accuracy are of the essence. The current gold-standard approach for examining tissues often takes too long and a faster approach, which involves freezing tissue, can introduce artifacts that can complicate diagnostics. A new study by investigators from the Mahmood Lab at the Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, and collaborators from Bogazici University developed a better way; the method leverages artificial intelligence to translate between frozen sections and the gold-standard approach, improving the quality of images to increase the accuracy of rapid diagnostics. Findings are published in Nature Biomedical Engineering.

"We are using the power of artificial intelligence to address an age-old problem at the intersection of surgery and pathology," said corresponding author Faisal Mahmood, PhD, of the Division of Computational Pathology at BWH. "Making a rapid diagnosis from frozen tissue samples is challenging and requires specialized training, but this kind of diagnosis is a critical step in caring for patients during surgery."

For making final diagnoses, pathologists use formalin-fixed and paraffin-embedded (FFPE) tissue samples - this method preserves tissue in a way that produces high-quality images but the process is laborious and typically takes 12 to 48 hours. For a rapid diagnosis, pathologists use an approach known as cryosectioning that involves fast freezing tissue, cutting sections, and observing these thin slices under a microscope. Cryosectioning takes minutes rather than hours but can distort cellular details and compromise or tear delicate tissue.

Mahmood and co-authors developed a deep-learning model that can be used to translate between frozen sections and more commonly used FFPE tissue. In their paper, the team demonstrated that the method could be used to subtype different kinds of cancer, including glioma and non-small-cell lung cancer. The team validated their findings by recruiting pathologists to a reader study in which they were asked to make a diagnosis from images that had gone through the AI method and traditional cryosectioning images. The AI method not only improved image quality but also improved diagnostic accuracy among experts. The algorithm was also tested on independently collected data from Turkey.

The authors note that in the future, prospective clinical studies should be conducted to validate the AI method and determine if it can contribute to diagnostic accuracy and surgical decision-making in real hospital settings.

"Our work shows that AI has the potential to make a time-sensitive, critical diagnosis easier and more accessible to pathologists," said Mahmood. "And it could potentially be applied to any type of cancer surgery. It opens up many possibilities for improving diagnosis and patient care."

Ozyoruk KB, Can S, Darbaz B, Başak K, Demir D, Gokceler GI, Serin G, Hacisalihoglu UP, Kurtuluş E, Lu MY, Chen TY, Williamson DFK, Yılmaz F, Mahmood F, Turan M.
A deep-learning model for transforming the style of tissue images from cryosectioned to formalin-fixed and paraffin-embedded.
Nat Biomed Eng. 2022 Dec;6(12):1407-1419. doi: 10.1038/s41551-022-00952-9

Most Popular Now

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...