Sussex Researchers use AI to Personalise Cancer Patient Treatments

Researchers at the University of Sussex are using Artificial Intelligence (AI) technology to analyse different types of cancer cells to understand different gene dependencies, and to identify genes that are critical to a cell's survival. Sussex researchers have done this by developing a prediction algorithm that works out which genes are essential in the cell, by analysing the genetic changes in the tumour. This can be used to identify actionable targets that in time could guide oncologists to personalise cancer patient treatments

Dr Frances Pearl, Senior Lecturer in Bioinformatics in the School of Life Sciences at the University of Sussex says: "Our vision is to take advantage of the decreasing cost of DNA sequencing and to harness the power of AI to understand cancer cell differences and what they mean for the individual patient’s treatment. Through our research, we were able to identify cell-specific gene dependencies using only the DNA sequence and RNA levels in that cell, which are easily and cheaply obtainable from tumour biopsy samples.

"This is an incredibly exciting step in our research which means that we can now work to improve the technology so that it can be offered to oncologists and help in the treatment pathways for their patients."

Cancer treatments are primarily prescribed on the basis of the location and type of cancer. Genetic differences in tumours can make standard cancer treatments ineffective. Using a personalised approach to guide treatment could improve life expectancy, quality of life and reduce unnecessary side effects of cancer patients.

In each cell, there are around 20,000 genes that contain the information needed to make proteins. Around 1,000 of those genes are essential, meaning they are required for the cell to survive. When normal cells become cancer cells, oncogenes (that is, those genes with the potential to cause cancer) become activated and tumour suppressor genes become inactivated, causing a rewiring of the cell. This causes the cell to become dependent on a new set of genes to survive, and this can then be exploited to kill the cancer cells.

By using this new technology to target protein products of tumour-specific dependent genes, cancer cells can be killed, leaving the normal cells which are not dependent on these genes relatively unharmed. Although dependencies can be determined using intensive laboratory techniques, it is costly and time consuming and would not be feasible to analyse all tumour samples in this way.

Benstead-Hume G, Wooller SK, Renaut J, Dias S, Woodbine L, Carr AM, Pearl FMG.
Biological network topology features predict gene dependencies in cancer cell-lines.
Bioinform Adv. 2022 Nov 10;2(1):vbac084. doi: 10.1093/bioadv/vbac084

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...