What's Your Gut Telling You?

Millions of people suffer from these painfully common conditions, and often endure inconvenient and invasive medical procedures to diagnose the causes.

In a study published in Nature Electronics, Khalil B. Ramadi, Assistant Professor of Bioengineering at NYU Tandon School of Engineering, revealed that he and a team of collaborators at MIT and Caltech have developed a tiny pill-like electromagnetic device that, once swallowed, could provide medical professionals a diagnostic window into the inner workings of the gastrointestinal (GI) tract.

The bluetooth-enabled device delivers a continual stream of data to a smartphone as it passes through the subject, using electromagnetic technology similar to what makes Magnetic Resonance Imaging (MRI) machines work.

This breakthrough means that the more than one-third of the global population with irritable bowel syndrome and other disorders related to motility - the functioning of muscles and nerves in the GI tract - could avoid standard diagnostic procedures like computerized tomography (CT) scans, X-rays or endoscopic tubes inserted through the nose or other entry point. Those procedures can be physically and mentally uncomfortable, rely on potentially harmful radiation, and demand patients spend considerable time inside medical facilities.

Instead, the ingestible radiation-free microdevice would require only that people keep close to electromagnetic coils as the device makes its way through their bodies. The coils could be worn in a backpack or jacket, so patients could go about their normal lives during the process.

"We anticipate that our ingestible microdevice may keep people out of hospitals and reduce burdens on the healthcare system, while delivering information vital to diagnose motility disorders as accurately as possible," said Ramadi, who heads the Laboratory for Advanced Neuroengineering and Translational Medicine at NYU Abu Dhabi.

Ramadi and his colleagues spent three years developing the device, which required creating a system of electromagnets that could function with high-resolution throughout the one-to-two foot range of the human abdomen, and not degrade in the GI tract. In the Nature Electronics paper, they announced their successful trial on pigs, suggesting the likelihood of similar results in human trials necessary for the device’s eventual real-world availability.

"Motility disorders and diseases involve the GI tract moving at abnormal speeds, including by working too quickly or slowly in specific places, but those things can be frustratingly difficult to measure," said Ramadi. "Current ingestible trackers tell us conditions like temperature inside the body, or capture images, but don’t directly indicate their location. Once our highly-sensitive device is swallowed it also shows us exactly where it is at any time. That gives us a timeline of the tract's movement and exposes the precise place of the malfunction, information critical to identifying the underlying disease."

This new study adds to Ramadi's track record in pioneering novel ingestibles that can diagnose and treat medical conditions. Previously, he announced that his team created an ingestible device that uses electrical signals to modulate brain activity via the gut, a development that could lead to treating a range of diseases, from Alzheimer's to diabetes, without medications - and their attendant side effects - or surgery.

Ramadi's work also exemplifies Tandon's commitment to groundbreaking research that improves healthcare, one of the School's areas of excellence. Among many other contributions to the field, Tandon researchers have recently created smartwatch-like devices that can help wearers manage their mental states; retina scanning that can predict stroke reoccurance; technology to help track the development of breast cancer; and models to assess the accuracy of mortality predictions when applied to different geographies.

Sharma, S., Ramadi, K.B., Poole, N.H. et al.
Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics.
Nat Electron. 2023. doi: 10.1038/s41928-023-00916-0

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

Great Start for Ideas and Innovations: D…

8 - 10 April 2025, Berlin, Germany. From 15 October to 15 November 2024, the DMEA invites experts from business, science, politics and practice to actively participate in shaping the congress...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...