AI can Help Optimize CT Scan X-Ray Radiation Dose

Computed tomography (CT) is one of the most powerful and well-established diagnostic tools available to modern medicine. An increasing number of people have been opting for CT scans, raising concerns about the amount of X-ray radiation that patients are exposed to. Ideally, a patient is exposed to minimum radiation levels during treatments or diagnostic procedures, while still receiving the expected benefit.

In practice, this is known as the ALARA principle, which stands for "As Low As Reasonably Achievable." However, this principle results in a trade-off because CT image quality decreases with a decrease in radiation power. Thus, medical staff usually aim to strike a balance between a patient's exposure to X-rays and obtaining good quality CT images to avoid misdiagnosis.

This balance can be achieved through an optimization strategy, in which healthcare professionals, primarily radiologists, observe real images generated by the tomographer and try to identify features, such as tumors or abnormal tissue. Following this, a specialist employs statistical methods to calculate the optimal radiation dose and configuration of the tomographer. This procedure can be generalized by employing reference CT images obtained by scanning specifically designed phantoms containing inserts of different sizes and contrasts, which represent standardized abnormalities. Nevertheless, such manual image analyses are very time-consuming.

To address this issue, a team of researchers from Italy led by Dr. Sandra Doria and members of the Physics Department at the University of Florence, in collaboration with radiologists and medical physicists from Florence Hospital, explored the possibility of automating this process using artificial intelligence (AI).

As reported in Journal of Medical Imaging (JMI), the team created and trained an algorithm - a "model observer" - based on convolutional neural networks (CNNs), which could analyze the standardized abnormalities in CT images just as well as a professional.

To do so, the team had to generate enough training and testing data for the model. Thirty healthcare professionals visually examined 1000 CT images, each consisting in a phantom that mimics human tissue. Aptly termed 2phantom," this material contained cylindrical inserts of different diameters and contrasts. The observers were asked to identify if and where the inserted object appeared in each of the images and state how confident they were in their assessment. This resulted in a dataset of 30,000 labeled CT images taken using different tomographic reconstruction configurations, accurately reflecting human interpretation.

Next, the team implemented two AI models based on different architectures - UNet and MobileNetV2. They modified the base design of these architectures to enable them to perform both classification ("Is there an unusual object in the CT image?") and localization ("Where is the unusual object?"). Then, they trained and tested the models using images from the dataset.

Through statistical analyses, the research team evaluated various performance metrics to verify that the model observers could accurately emulate how a human would assess the CT images of the phantom. "Our results were very promising, as both trained models performed remarkably well and achieved an absolute percentage error of less than 5 percent. This indicated that the models could identify the object inserted in the phantom with similar accuracy and confidence as a human professional, for almost all reconstruction configurations and abnormalities sizes and contrasts," remarked Doria, while discussing their findings.

Doria and her team believe that with additional efforts, their model could become a viable strategy to automatically assess CT image quality. She further adds, "Our CNN-based model observers could greatly simplify the process of optimizing the radiation dose used in CT protocols, thereby minimizing health risks to the patient, and help avoid the time-consuming limitations of medical evaluations."

Doria expressed confidence that the team will succeed in applying their AI model observers on a larger scale, making CT evaluations faster and safer than ever before.

Valeri F, Bartolucci M, Cantoni E, Carpi R, Cisbani E, Cupparo I, Doria S, Gori C, Grigioni M, Lasagni L, Marconi A, Mazzoni LN, Miele V, Pradella S, Risaliti G, Sanguineti V, Sona D, Vannucchi L, Taddeucci A.
UNet and MobileNet CNN-based model observers for CT protocol optimization: comparative performance evaluation by means of phantom CT images.
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S11904. doi: 10.1117/1.JMI.10.S1.S11904

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...