New Machine-Learning Method may Aid Personalized Cancer Therapy

Deep-learning technology developed by a team of Johns Hopkins engineers and cancer researchers can accurately predict cancer-related protein fragments that may trigger an immune system response. If validated in clinical trials, the technology could help scientists overcome a major hurdle to developing personalized immunotherapies and vaccines.

In a study published July 20 in the journal Nature Machine Intelligence, investigators from Johns Hopkins Biomedical Engineering, the Johns Hopkins Institute for Computational Medicine, the Johns Hopkins Kimmel Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy show that their deep-learning method, called BigMHC, can identify protein fragments on cancer cells that elicit a tumor cell-killing immune response, an essential step in understanding response to immunotherapy and in developing personalized cancer therapies.

"Cancer immunotherapy is designed to activate a patient’s immune system to destroy cancer cells," says Rachel Karchin, Ph.D., professor of biomedical engineering, oncology and computer science, and a core member of the Institute for Computational Medicine. "A critical step in the process is immune system recognition of cancer cells through T cell binding to cancer-specific protein fragments on the cell surface."

The cancer protein fragments that elicit this tumor-killing immune response may originate from changes in the genetic makeup of cancer cells (or mutations), called mutation-associated neoantigens. Each patient's tumor has a unique set of such neoantigens that determine tumor foreignness, in other words, how different the tumor makeup is compared to self. Scientists can identify which mutation-associated neoantigens a patient's tumor has by analyzing the genome of the cancer. Determining those which are most likely to trigger a tumor-killing immune response could enable scientists to develop personalized cancer vaccines or customized immune therapies as well as inform patient selection for these therapies. However, current methods for identifying and validating immune response-triggering neoantigens are time-consuming and costly, as these typically rely on labor-intense, wet laboratory experiments.

Because neoantigen validation is so resource intensive, there are few data to train deep-learning models. To address this, the researchers trained BigMHC, a set of deep neural networks, in a two-stage process called transfer learning. First, BigMHC learned to identify antigens that are presented at the cell surface, an early stage of the adaptive immune response for which many data are available. Then, BigMHC was fine-tuned by learning a later stage, T-cell recognition, for which few data exist. In this manner, the researchers leveraged massive data to build a model of antigen presentation, and refined this model to predict immunogenic antigens.

The researchers tested BigMHC on a large independent data set, and showed that it was better at predicting antigen presentation than other methods. They further tested BigMHC on data from study co-author Kellie Smith, Ph.D., associate professor of oncology at the Bloomberg~Kimmel Institute for Cancer Immunotherapy, and found that BigMCH significantly outperformed seven other methods at identifying neoantigens that trigger T-cell response. "BigMHC has outstanding precision at predicting immunogenic neoantigens," says Karchin.

"There is an urgent, unmet clinical need to tailor cancer immunotherapy to the subset of patients most likely to benefit, and BigMHC can shed light into cancer features that drive tumor foreignness, thus triggering an effective anti-tumor immune response," says study co-author Valsamo "Elsa" Anagnostou, M.D., Ph.D., director of the thoracic oncology biorepository, leader of the Johns Hopkins Molecular Tumor Board and Precision Oncology Analytics, and associate professor of oncology in the Kimmel Cancer Center.

The team is now expanding its efforts in testing BigMHC in several immunotherapy clinical trials to determine if it can help scientists sift through hundreds of thousands of neoantigens to filter down to those most likely to provoke an immune response.

"The hope is that BigMHC could guide cancer immunologists as they develop immunotherapies that can be used for multiple patients, or develop personalized vaccines that would boost a patient's immune response to kill their cancer cells,2 says lead author Benjamin Alexander Albert, who was an undergraduate student researcher in the departments of biomedical engineering and computer science at The Johns Hopkins University when the study was conducted. Albert is now a Ph.D. student at the University of California, San Diego.

Karchin and her team believe BigMHC and machine-learning-based tools like it can help clinicians and cancer researchers efficiently and cost-effectively sift through vast amounts of data needed to develop more personalized approaches to cancer treatment. "Deep learning has an important role to play in clinical cancer research and practice," Karchin says.

Study co-authors were Yunxiao Yang, Xiaoshan Shao and Dipika Singh of Johns Hopkins.

The work was supported in part by the National Institutes of Health (grant CA121113), the Department of Defense Congressionally Directed Medical Research Programs (grant CA190755) and the ECOG-ACRIN Thoracic Malignancies Integrated Translational Science Center (grant UG1CA233259).

Under a license agreement between Genentech and The Johns Hopkins University, Shao, Karchin and the university are entitled to royalty distributions related to the MHCnuggets neoantigen prediction technology. This arrangement has been reviewed and approved by The Johns Hopkins University in accordance with its conflict-of-interest policies. Anagnostou has received research funding to her institution from Bristol Myers Squibb, Astra Zeneca, Personal Genome Diagnostics and Delfi Diagnostics in the past five years. She is an advisory board member for Neogenomics and Astra Zeneca. She is an inventor on several patent applications submitted by The Johns Hopkins University related to cancer genomic analyses, ctDNA therapeutic response monitoring and immunogenomic features of response to immunotherapy that have been licensed to one or more entities. Under the terms of these license agreements, the university and inventors are entitled to fees and royalty distributions.

Albert, B.A., Yang, Y., Shao, X.M. et al.
Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity.
Nat Mach Intell, 2023. doi: 10.1038/s42256-023-00694-6

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...