AI Outperforms Humans in Standardized Tests of Creative Potential

Score another one for artificial intelligence. In a recent study, 151 human participants were pitted against ChatGPT-4 in three tests designed to measure divergent thinking, which is considered to be an indicator of creative thought.

Divergent thinking is characterized by the ability to generate a unique solution to a question that does not have one expected solution, such as "What is the best way to avoid talking about politics with my parents?" In the study, GPT-4 provided more original and elaborate answers than the human participants.

The study, "The current state of artificial intelligence generative language models is more creative than humans on divergent thinking tasks," was published in Scientific Reports and authored by U of A Ph.D. students in psychological science Kent F. Hubert and Kim N. Awa, as well as Darya L. Zabelina, an assistant professor of psychological science at the U of A and director of the Mechanisms of Creative Cognition and Attention Lab.

The three tests utilized were the Alternative Use Task, which asks participants to come up with creative uses for everyday objects like a rope or a fork; the Consequences Task, which invites participants to imagine possible outcomes of hypothetical situations, like "what if humans no longer needed sleep?"; and the Divergent Associations Task, which asks participants to generate 10 nouns that are as semantically distant as possible. For instance, there is not much semantic distance between "dog" and "cat" while there is a great deal between words like "cat" and "ontology."

Answers were evaluated for the number of responses, length of response and semantic difference between words. Ultimately, the authors found that "Overall, GPT-4 was more original and elaborate than humans on each of the divergent thinking tasks, even when controlling for fluency of responses. In other words, GPT-4 demonstrated higher creative potential across an entire battery of divergent thinking tasks."

This finding does come with some caveats. The authors state, "It is important to note that the measures used in this study are all measures of creative potential, but the involvement in creative activities or achievements are another aspect of measuring a person’s creativity." The purpose of the study was to examine human-level creative potential, not necessarily people who may have established creative credentials.

Hubert and Awa further note that "AI, unlike humans, does not have agency" and is "dependent on the assistance of a human user. Therefore, the creative potential of AI is in a constant state of stagnation unless prompted."

Also, the researchers did not evaluate the appropriateness of GPT-4 responses. So while the AI may have provided more responses and more original responses, human participants may have felt they were constrained by their responses needing to be grounded in the real world.

Awa also acknowledged that the human motivation to write elaborate answers may not have been high, and said there are additional questions about "how do you operationalize creativity? Can we really say that using these tests for humans is generalizable to different people? Is it assessing a broad array of creative thinking? So I think it has us critically examining what are the most popular measures of divergent thinking."

Whether the tests are perfect measures of human creative potential is not really the point. The point is that large language models are rapidly progressing and outperforming humans in ways they have not before. Whether they are a threat to replace human creativity remains to be seen. For now, the authors continue to see "Moving forward, future possibilities of AI acting as a tool of inspiration, as an aid in a person's creative process or to overcome fixedness is promising."

Hubert KF, Awa KN, Zabelina DL.
The current state of artificial intelligence generative language models is more creative than humans on divergent thinking tasks.
Sci Rep. 2024 Feb 10;14(1):3440. doi: 10.1038/s41598-024-53303-w

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...