Two Artificial Intelligences Talk to Each Other

Performing a new task based solely on verbal or written instructions, and then describing it to others so that they can reproduce it, is a cornerstone of human communication that still resists artificial intelligence (AI). A team from the University of Geneva (UNIGE) has succeeded in modelling an artificial neural network capable of this cognitive prowess. After learning and performing a series of basic tasks, this AI was able to provide a linguistic description of them to a ‘‘sister’’ AI, which in turn performed them. These promising results, especially for robotics, are published in Nature Neuroscience.

Performing a new task without prior training, on the sole basis of verbal or written instructions, is a unique human ability. What’s more, once we have learned the task, we are able to describe it so that another person can reproduce it. This dual capacity distinguishes us from other species which, to learn a new task, need numerous trials accompanied by positive or negative reinforcement signals, without being able to communicate it to their congeners.

A sub-field of artificial intelligence (AI) - Natural language processing - seeks to recreate this human faculty, with machines that understand and respond to vocal or textual data. This technique is based on artificial neural networks, inspired by our biological neurons and by the way they transmit electrical signals to each other in the brain. However, the neural calculations that would make it possible to achieve the cognitive feat described above are still poorly understood.

"Currently, conversational agents using AI are capable of integrating linguistic information to produce text or an image. But, as far as we know, they are not yet capable of translating a verbal or written instruction into a sensorimotor action, and even less explaining it to another artificial intelligence so that it can reproduce it," explains Alexandre Pouget, full professor in the Department of Basic Neurosciences at the UNIGE Faculty of Medicine.

A model brain

The researcher and his team have succeeded in developing an artificial neuronal model with this dual capacity, albeit with prior training. "We started with an existing model of artificial neurons, S-Bert, which has 300 million neurons and is pre-trained to understand language. We 'connected' it to another, simpler network of a few thousand neurons," explains Reidar Riveland, a PhD student in the Department of Basic Neurosciences at the UNIGE Faculty of Medicine, and first author of the study.

In the first stage of the experiment, the neuroscientists trained this network to simulate Wernicke’s area, the part of our brain that enables us to perceive and interpret language. In the second stage, the network was trained to reproduce Broca’s area, which, under the influence of Wernicke’s area, is responsible for producing and articulating words. The entire process was carried out on conventional laptop computers. Written instructions in English were then transmitted to the AI.

For example: pointing to the location - left or right - where a stimulus is perceived; responding in the opposite direction of a stimulus; or, more complex, between two visual stimuli with a slight difference in contrast, showing the brighter one. The scientists then evaluated the results of the model, which simulated the intention of moving, or in this case pointing. "Once these tasks had been learned, the network was able to describe them to a second network - a copy of the first - so that it could reproduce them. To our knowledge, this is the first time that two AIs have been able to talk to each other in a purely linguistic way," says Alexandre Pouget, who led the research.

For future humanoids

This model opens new horizons for understanding the interaction between language and behaviour. It is particularly promising for the robotics sector, where the development of technologies that enable machines to talk to each other is a key issue. "The network we have developed is very small. Nothing now stands in the way of developing, on this basis, much more complex networks that would be integrated into humanoid robots capable of understanding us but also of understanding each other," conclude the two researchers.

Riveland R, Pouget A.
Natural language instructions induce compositional generalization in networks of neurons.
Nat Neurosci. 2024 Mar 18. doi: 10.1038/s41593-024-01607-5

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...