Experts Propose Specific and Suited Guidelines for the Use and Regulation of AI

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including different types of images and text. For example, for a patient with colorectal cancer, a single GMAI model could interpret endoscopy videos, pathology slides and electronic health record (EHR) data. Hence, such multi-purpose or generalist models represent a paradigm shift away from narrow AI models.

Regulatory bodies face a dilemma in adapting to these new models because current regulations are designed for applications with a defined and fixed purpose, specific set of clinical indications and target population. Adaptation or extension after approval is not possible without going through quality management and regulatory, administrative processes again. GMAI models, with their adaptability and predictive potential even without specific training examples - so called zero shot reasoning - therefore pose challenges for validation and reliability assessment. Currently, they are excluded by all international frameworks.

The authors point out that existing regulatory frameworks are not well suited to handle GMAI models due to their characteristics. "If these regulations remain unchanged, a possible solution could be hybrid approaches. GMAIs could be approved as medical devices and then the range of allowed clinical prompts could be restricted," says Prof. Stephen Gilbert, Professor of Medical Device Regulatory Science at TU Dresden. "But this approach is to force models with potential to intelligential address new questions and multimodal data onto narrow tracks through rules written when these technologies were not anticipated. Specific decisions should be made on how to proceed with these technologies and not to exclude their ability to address questions they were not specifically designed for. New technologies sometimes call for new regulatory paradigms," says Prof. Gilbert.

The researchers argue that it will be impossible to prevent patients and medical experts from using generic models or unapproved medical decision support systems. Therefore, it would be crucial to maintain the central role of physicians and enable them as empowered information interpreters.

In conclusion, the researchers propose a flexible regulatory approach that accommodates the unique characteristics of GMAI models while ensuring patient safety and supporting physician decision-making. They point out that a rigid regulatory framework could hinder progress in AI-driven healthcare, and call for a nuanced approach that balances innovation with patient welfare.

Gilbert S, Kather JN.
Guardrails for the use of generalist AI in cancer care.
Nat Rev Cancer. 2024 Apr 16. doi: 10.1038/s41568-024-00685-8

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...