Experts Propose Specific and Suited Guidelines for the Use and Regulation of AI

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including different types of images and text. For example, for a patient with colorectal cancer, a single GMAI model could interpret endoscopy videos, pathology slides and electronic health record (EHR) data. Hence, such multi-purpose or generalist models represent a paradigm shift away from narrow AI models.

Regulatory bodies face a dilemma in adapting to these new models because current regulations are designed for applications with a defined and fixed purpose, specific set of clinical indications and target population. Adaptation or extension after approval is not possible without going through quality management and regulatory, administrative processes again. GMAI models, with their adaptability and predictive potential even without specific training examples - so called zero shot reasoning - therefore pose challenges for validation and reliability assessment. Currently, they are excluded by all international frameworks.

The authors point out that existing regulatory frameworks are not well suited to handle GMAI models due to their characteristics. "If these regulations remain unchanged, a possible solution could be hybrid approaches. GMAIs could be approved as medical devices and then the range of allowed clinical prompts could be restricted," says Prof. Stephen Gilbert, Professor of Medical Device Regulatory Science at TU Dresden. "But this approach is to force models with potential to intelligential address new questions and multimodal data onto narrow tracks through rules written when these technologies were not anticipated. Specific decisions should be made on how to proceed with these technologies and not to exclude their ability to address questions they were not specifically designed for. New technologies sometimes call for new regulatory paradigms," says Prof. Gilbert.

The researchers argue that it will be impossible to prevent patients and medical experts from using generic models or unapproved medical decision support systems. Therefore, it would be crucial to maintain the central role of physicians and enable them as empowered information interpreters.

In conclusion, the researchers propose a flexible regulatory approach that accommodates the unique characteristics of GMAI models while ensuring patient safety and supporting physician decision-making. They point out that a rigid regulatory framework could hinder progress in AI-driven healthcare, and call for a nuanced approach that balances innovation with patient welfare.

Gilbert S, Kather JN.
Guardrails for the use of generalist AI in cancer care.
Nat Rev Cancer. 2024 Apr 16. doi: 10.1038/s41568-024-00685-8

Most Popular Now

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...