An AI-Powered Wearable System Tracks the 3D Movement of Smart Pills in the Gut

Scientists at the University of Southern California have developed an artificial intelligence (AI)-powered system to track tiny devices that monitor markers of disease in the gut. Devices using the novel system may help at-risk individuals monitor their gastrointestinal (GI) tract health at home, without the need for invasive tests in hospital settings. This work appears June 12 in the journal Cell Reports Physical Science.

"Ingestibles are like Fitbits for the gut," says author Yasser Khan, assistant professor of electrical and computer engineering at the University of Southern California. "But tracking them once swallowed has been a significant challenge."

Gas that is formed in the intestines when bacteria break down food can offer insights into a person's health. Currently, to measure GI tract gases, physicians either use direct methods such as flatus collection and intestinal tube collection, or indirect methods such as breath testing and stool analysis. Ingestible capsules - devices that a user swallows - offer a promising alternative, but no such technologies have been developed for precise gas sensing.

To tackle this problem, Khan and colleagues developed a system that includes a wearable coil, which the user can conceal under a t-shirt or other clothing. The coil creates a magnetic field, which interacts with sensors embedded in an ingestible pill after it has been swallowed. AI analyzes the signals the pill receives, pinpointing where the device is located in the gut within less than a few millimeters. In addition, the system monitors 3D real-time concentrations of ammonia, a proxy for a bacteria linked with ulcers and gastric cancer, via the device’s optical gas-sensing membranes.

While previous attempts to track ingestibles as they journey through the gut have relied on bulky desktop coils, the wearable coil can be used anywhere, says Khan. The technology may also have other applications beyond measuring GI tract gases, such as identifying inflammation in the gut caused by Crohn’s disease and delivering drugs to precisely these regions.

The researchers tested the system's performance in a variety of mediums that mimic the GI tract, including a simulated cow intestine and liquids designed to replicate stomach and intestinal fluids.

"During these tests, the device demonstrated its ability to pinpoint its location and measure levels of oxygen and ammonia gases," says Khan. "Any ingestible device can utilize the technology we've developed."

However, there are still improvements to be made to the device, says Khan, such as designing it to be smaller and to use less power. Next, as they continue to hone the device, Khan and colleagues plan to test it in pigs in order to study its safety and effectiveness in an organism with human-like biology.

"Successful outcomes from these trials will bring the device nearer to readiness for human clinical trials," says Khan. "We are optimistic about the practicality of the system and believe it will soon be applicable for use in humans."

Angsagan Abdigazy, Mohammed Arfan, June Shao, Mohammad Shafiqul Islam, Md Farhad Hassan, Yasser Khan.
3D gas mapping in the gut with AI-enabled ingestible and wearable electronics.
Cell Reports Physical Science, 2024. doi: 10.1016/j.xcrp.2024.101990

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...