An AI-Powered Wearable System Tracks the 3D Movement of Smart Pills in the Gut

Scientists at the University of Southern California have developed an artificial intelligence (AI)-powered system to track tiny devices that monitor markers of disease in the gut. Devices using the novel system may help at-risk individuals monitor their gastrointestinal (GI) tract health at home, without the need for invasive tests in hospital settings. This work appears June 12 in the journal Cell Reports Physical Science.

"Ingestibles are like Fitbits for the gut," says author Yasser Khan, assistant professor of electrical and computer engineering at the University of Southern California. "But tracking them once swallowed has been a significant challenge."

Gas that is formed in the intestines when bacteria break down food can offer insights into a person's health. Currently, to measure GI tract gases, physicians either use direct methods such as flatus collection and intestinal tube collection, or indirect methods such as breath testing and stool analysis. Ingestible capsules - devices that a user swallows - offer a promising alternative, but no such technologies have been developed for precise gas sensing.

To tackle this problem, Khan and colleagues developed a system that includes a wearable coil, which the user can conceal under a t-shirt or other clothing. The coil creates a magnetic field, which interacts with sensors embedded in an ingestible pill after it has been swallowed. AI analyzes the signals the pill receives, pinpointing where the device is located in the gut within less than a few millimeters. In addition, the system monitors 3D real-time concentrations of ammonia, a proxy for a bacteria linked with ulcers and gastric cancer, via the device’s optical gas-sensing membranes.

While previous attempts to track ingestibles as they journey through the gut have relied on bulky desktop coils, the wearable coil can be used anywhere, says Khan. The technology may also have other applications beyond measuring GI tract gases, such as identifying inflammation in the gut caused by Crohn’s disease and delivering drugs to precisely these regions.

The researchers tested the system's performance in a variety of mediums that mimic the GI tract, including a simulated cow intestine and liquids designed to replicate stomach and intestinal fluids.

"During these tests, the device demonstrated its ability to pinpoint its location and measure levels of oxygen and ammonia gases," says Khan. "Any ingestible device can utilize the technology we've developed."

However, there are still improvements to be made to the device, says Khan, such as designing it to be smaller and to use less power. Next, as they continue to hone the device, Khan and colleagues plan to test it in pigs in order to study its safety and effectiveness in an organism with human-like biology.

"Successful outcomes from these trials will bring the device nearer to readiness for human clinical trials," says Khan. "We are optimistic about the practicality of the system and believe it will soon be applicable for use in humans."

Angsagan Abdigazy, Mohammed Arfan, June Shao, Mohammad Shafiqul Islam, Md Farhad Hassan, Yasser Khan.
3D gas mapping in the gut with AI-enabled ingestible and wearable electronics.
Cell Reports Physical Science, 2024. doi: 10.1016/j.xcrp.2024.101990

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...