New AI Software could Make Diagnosing Dementia Easier and Faster for Doctors

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not the only one. Because multiple causes of dementia can happen simultaneously, reaching a definitive diagnosis isn't easy or quick. And often by then, it’s too late to intervene.

Boston University's Vijaya B. Kolachalama, an expert on using computers to aid medical diagnoses, has created an artificial intelligence tool that can determine what’s causing a person's cognitive decline, and assist doctors in more efficiently zeroing in on an accurate diagnosis.

Developed with a team of BU researchers and outside collaborators, it accurately identifies specific causes of dementia using commonly collected patient information - like medical history, medication use, demographic data, and neurological and neuropsychological exam scores - and neuroimaging data, such as magnetic resonance imaging (MRI) scans. For each case, all the available information is entered into the AI-powered software, which then generates a prediction of the type of dementia a person has and a confidence score. The findings are published in Nature Medicine.

"We believe AI can help by identifying these disorders early and assisting doctors in managing their patients more effectively, preventing the diseases from getting worse," says Kolachalama, a BU associate professor of medicine and computer science, and corresponding author on the paper.

The platform can diagnose 10 different types of dementia, including vascular dementia and frontotemporal dementia, even if they occur together. As new drugs gain approval for treating Alzheimer's - such as Kisunla, an injection that the US Food & Drug Administration recently approved for people with mild cognitive impairment - Kolachalama is hopeful that his team’s AI tool can help determine who can benefit from different treatments or participate in clinical trials to help bring more drugs to market.

The algorithm was trained on data from more than 50,000 individuals from nine different datasets collected around the world. To test the software's performance, the researchers gave neurologists working alone and neurologists using the computer model 100 cases to evaluate. They then compared the results of doctors working solo versus those using the software - and found the software boosted the doctors’ accuracy by 26 percent.

Kolachalama collaborates with neurologists and radiologists from around the world who all have access to different types of patient information. For that reason, the software works even with limited information. For example, MRI machines are not as prevalent in under-resourced hospitals in low-income countries, so having a tool that can use any type of available patient data is key for expanding the technology to areas that need it most.

"The ability to generate a diagnosis with routine clinical data is becoming increasingly important given the significant challenges in accessing gold-standard testing, not only in remote and economically developing regions, but [also] in urban healthcare centers," says Kolachalama.

He points out that there is a shortage of neurology experts around the world, and with the number of neurology patients growing, this mismatch is putting a big strain on healthcare systems. Having a software program that can assist in diagnosing could help lift the burden that's falling on doctors with limited time and resources, Kolachalama says. The next step for the AI tool is bringing it to hospitals and doctors' offices for field testing - a goal that Kolachalama and his team are actively working toward.

Xue C, Kowshik SS, Lteif D, Puducheri S, Jasodanand VH, Zhou OT, Walia AS, Guney OB, Zhang JD, Pham ST, Kaliaev A, Andreu-Arasa VC, Dwyer BC, Farris CW, Hao H, Kedar S, Mian AZ, Murman DL, O'Shea SA, Paul AB, Rohatgi S, Saint-Hilaire MH, Sartor EA, Setty BN, Small JE, Swaminathan A, Taraschenko O, Yuan J, Zhou Y, Zhu S, Karjadi C, Alvin Ang TF, Bargal SA, Plummer BA, Poston KL, Ahangaran M, Au R, Kolachalama VB.
AI-based differential diagnosis of dementia etiologies on multimodal data.
Nat Med. 2024 Jul 4. doi: 10.1038/s41591-024-03118-z

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...