ChatGPT Outperformed Trainee Doctors in Assessing Complex Respiratory Illness in Children

The chatbot ChatGPT performed better than trainee doctors in assessing complex cases of respiratory disease in areas such as cystic fibrosis, asthma and chest infections in a study presented at the European Respiratory Society (ERS) Congress in Vienna, Austria.

The study also showed that Google’s chatbot Bard performed better than trainees in some aspects and Microsoft’s Bing chatbot performed as well as trainees.

The research suggests that these large language models (LLMs) could be used to support trainee doctors, nurses and general practitioners to triage patients more quickly and ease pressure on health services.

The study was presented by Dr Manjith Narayanan, a consultant in paediatric pulmonology at the Royal Hospital for Children and Young People, Edinburgh and honorary senior clinical lecturer at the University of Edinburgh, UK. He said: “Large language models, like ChatGPT, have come into prominence in the last year and a half with their ability to seemingly understand natural language and provide responses that can adequately simulate a human-like conversation. These tools have several potential applications in medicine. My motivation to carry out this research was to assess how well LLMs are able to assist clinicians in real life.”

To investigate this, Dr Narayanan used clinical scenarios that occur frequently in paediatric respiratory medicine. The scenarios were provided by six other experts in paediatric respiratory medicine and covered topics like cystic fibrosis, asthma, sleep disordered breathing, breathlessness and chest infections. They were all scenarios where there is no obvious diagnosis, and where there is no published evidence, guidelines or expert consensus that point to a specific diagnosis or plan.

Ten trainee doctors who had less than four months of clinical experience in paediatrics were given an hour where they could use the internet, but not any chatbots, to solve each scenario with a descriptive answer of 200 to 400 words. Each scenario was also presented to the three chatbots.

All the responses were scored by six paediatric respiratory experts for correctness, comprehensiveness, usefulness, plausibility, and coherence. They were also asked to say whether they thought each response was human- or chatbot-generated and to give each response an overall score out of nine.

Solutions provided by ChatGPT version 3.5 scored an average of seven out of nine overall and were believed to be more human-like than responses from the other chatbots. Bard scored an average of six out of nine and was scored as more ‘coherent’ than trainee doctors, but in other respects was no better or worse than trainee doctors. Bing scored an average of four out of nine - the same as trainee doctors overall. Experts reliably identified Bing and Bard responses as non-human.

Dr Narayanan said: “Our study is the first, to our knowledge, to test LLMs against trainee doctors in situations that reflect real-life clinical practice. We did this by allowing the trainee doctors to have full access to resources available on the internet, as they would in real life. This moves the focus away from testing memory, where there is a clear advantage for LLMs. Therefore, this study shows us another way we could be using LLMs and how close we are to regular day-to-day clinical application.

"We have not directly tested how LLMs would work in patient facing roles. However, it could be used by triage nurses, trainee doctors and primary care physicians, who are often the first to review a patient."

The researchers did not find any obvious instances of ‘hallucinations’ (seemingly made-up information) with any of the three LLMs. "Even though, in our study, we did not see any instance of hallucination by LLMs, we need to be aware of this possibility and build mitigations against this," Dr Narayanan added. Answers that were judged to be irrelevant to the context were occasionally given by Bing, Bard and the trainee doctors.

Dr Narayanan and his colleagues are now planning to test chatbots against more senior doctors and to look at newer and more advanced LLMs.

Hilary Pinnock is ERS Education Council Chair and Professor of Primary Care Respiratory Medicine at The University of Edinburgh, UK, and was not involved in the research. She says: "This is a fascinating study. It is encouraging, but maybe also a bit scary, to see how a widely available AI tool like ChatGPT can provide solutions to complex cases of respiratory illness in children. It certainly points the way to a brave new world of AI-supported care.

"However, as the researchers point out, before we start to use AI in routine clinical practice, we need to be confident that it will not create errors either through ‘hallucinating’ fake information or because it has been trained on data that does not equitably represent the population we serve. As the researchers have demonstrated, AI holds out the promise of a new way of working, but we need extensive testing of clinical accuracy and safety, pragmatic assessment of organisational efficiency, and exploration of the societal implications before we embed this technology in routine care."

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...