Paving the Way for New Treatments

A University of Missouri researcher has created a computer program that can unravel the mysteries of how proteins work together - giving scientists valuable insights to better prevent, diagnose and treat cancer and other diseases.

Jianlin "Jack" Cheng from Mizzou's College of Engineering and his student, Nabin Giri, have developed a tool called Cryo2Struct that uses artificial intelligence (AI) to build the three-dimensional atomic structure of large protein complexes, work recently published in Nature Communications. The model uses data from pictures of frozen molecules captured by powerful microscopes, or cryo-electron microscopy (cryo-EM) images.

"Cryo-EM right now is a revolutionary, key technology for determining large protein structures and assemblies in cells," said Cheng, a Curators' Distinguished Professor of Electrical Engineering and Computer Science. "But building protein structures from Cryo-EM data is labor intensive and requires a lot of human intervention, making it time-consuming and hard to reproduce. Our technique is fully automated and generates more accurate structures than existing methods."

To understand the significance of the work you have to know a bit about proteins and the decades-old struggle to understand them.

Proteins are the building blocks of life. They start as strings of amino acids that fold into three-dimensional shapes. Those shapes determine how a protein will function.

For more than 50 years, that folding process baffled researchers.

Cheng was among the first to apply deep learning, a type of AI, to the problem. In 2012, he demonstrated an AI-based model that proved deep learning could predict protein structures. The work paved the way for groundbreaking advancements, including Google’s AlphaFold, now considered the most accurate tool in the world for predicting protein structures.

But predicting a single protein structure is only half of the problem. In the real world, proteins work together as molecular machines that carry out complicated biological functions. Understanding protein interactions is critical because they determine how diseases develop and help scientists figure out how best to treat them.

Cheng's Cryo2Struct operates a little like a detective cracking a case without any clues.

The system analyzes cryo-EM images and identifies the individual atoms and their positions within a protein complex, even when there’s no prior knowledge of the structure. The system can then assemble these atoms into a complete 3D model of protein complexes, providing insights into how proteins function.

"Our technology enables scientists to determine and build a structure from cryo-EM data," Cheng said. "Once you have that structure and understand its functions, you can design drugs to counter any faulty functions of a protein complex to make it function properly."

In a related paper published in Chemistry Communications, Cheng and his student, Alex Morehead, explored a different AI method called diffusion model, modeling how molecular structures evolve from random noise into well-defined shapes. Those methods can help scientists generate and optimize small molecules, including drugs, and determine how and where those drugs bind to proteins.

"For instance, I have a drug, and I want to make it work better for some patients," Cheng said. "Now I can use AI to change it and optimize it."

Mizzou's interdisciplinary resources helped make the breakthrough possible. Cheng is a researcher at NextGen Precision Health, where he has access to Cryo-EM and high-resolution electron microscopy.

"The opportunities at Mizzou to collaborate with other researchers and utilize state-of-the-art equipment are unparalleled," he said. "At NextGen, we’re all working to advance highly individualized health care, and technologies like Cryo2Struct will help make that possible."

Giri N, Cheng J.
De novo atomic protein structure modeling for cryoEM density maps using 3D transformer and HMM.
Nat Commun. 2024 Jun 29;15(1):5511. doi: 10.1038/s41467-024-49647-6

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

New Medical AI Tool Identifies more Case…

Investigators at Mass General Brigham have developed an AI-based tool to sift through electronic health records to help clinicians identify cases of long COVID, an often mysterious condition that can...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...