When Detecting Depression, the Eyes have it

It has been estimated that nearly 300 million people, or about 4% of the global population, are afflicted by some form of depression. But detecting it can be difficult, particularly when those affected don’t (or won't) report negative feelings to friends, family or clinicians.

Now Stevens professor Sang Won Bae is working on several AI-powered smartphone applications and systems that could non-invasively warn us, and others, that we may be becoming depressed.

"Depression is a major challenge," says Bae. "We want to help."

"And since most people in the world today use smartphones daily, this could be a useful detection tool that’s already built and ready to be used."

One system Bae is developing with Stevens doctoral candidate Rahul Islam, called PupilSense, works by constantly taking snapshots and measurements of a smartphone user’s pupils.

"Previous research over the past three decades has repeatedly demonstrated how pupillary reflexes and responses can be correlated to depressive episodes," she explains.

The system accurately calculate pupils’ diameters, as comparing to the surrounding irises of the eyes, from 10-second “burst” photo streams captured while users are opening their phones or accessing certain social media and other apps.

In one early test of the system with 25 volunteers over a four-week period, the system - embedded on those volunteers' smartphones - analyzed approximately 16,000 interactions with phones once pupil-image data were collected. After teaching an AI to differentiate between "normal" responses and abnormal ones, Bae and Islam processed the photo data and compared it with the volunteers' self-reported moods.

The best iteration of PupilSense - one known as TSF, which uses only selected, high-quality data points - proved 76% accurate at flagging times when people did indeed feel depressed. That’s better than the best smartphone-based system currently being developed and tested for detection depression, a platform known as AWARE.

"We will continue to develop this technology now that the concept has been proven," adds Bae, who previously developed smartphone-based systems to predict binge drinking and cannabis use.

The system was first unveiled at the International Conference on Activity and Behavior Computing in Japan in late spring, and the system is now available open-source on the GitHub platform.

Bae and Islam are also developing a second system known as FacePsy that powerfully parses facial expressions for insight into our moods.

"A growing body of psychological studies suggest that depression is characterized by nonverbal signals such as facial muscle movements and head gestures," Bae points out.

FacePsy runs in the background of a phone, taking facial snapshots whenever a phone is opened or commonly used applications are opened. (Importantly, it deletes the facial images themselves almost immediately after analysis, protecting users' privacy.)

"We didn't know exactly which facial gestures or eye movements would correspond with self-reported depression when we started out," Bae explains. "Some of them were expected, and some of them were surprising."

Increased smiling, for instance, appeared in the pilot study to correlate not with happiness but with potential signs of a depressed mood and affect.

"This could be a coping mechanism, for instance people putting on a 'brave face' for themselves and for others when they are actually feeling down," says Bae. "Or it could be an artifact of the study. More research is needed."

Other apparent signals of depression revealed in the early data included fewer facial movements during the morning hours and certain very specific eye- and head-movement patterns. (Yawing, or side-to-side, movements of the head during the morning seemed to be strongly linked to increased depressive symptoms, for instance.)

Interestingly, a higher detection of the eyes being more open during the morning and evening was associated with potential depression, too - suggesting outward expressions of alertness or happiness can sometimes mask depressive feelings beneath.

"Other systems using AI to detect depression require the wearing of a device, or even multiple devices," Bae concludes. "We think this FacePsy pilot study is a great first step toward a compact, inexpensive, easy-to-use diagnostic tool."

Rahul Islam, Sang Won Bae.
FacePsy: An Open-Source Affective Mobile Sensing System - Analyzing Facial Behavior and Head Gesture for Depression Detection in Naturalistic Settings.
Proc. ACM Hum.-Comput. Interact. 8, MHCI, Article 260 (September 2024). doi: 10.1145/3676505

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...