When it comes to Emergency Care, ChatGPT Overprescribes

If ChatGPT were cut loose in the Emergency Department, it might suggest unneeded x-rays and antibiotics for some patients and admit others who didn't require hospital treatment, a new study from UC San Francisco has found.

The researchers said that, while the model could be prompted in ways that make its responses more accurate, it's still no match for the clinical judgment of a human doctor.

"This is a valuable message to clinicians not to blindly trust these models," said postdoctoral scholar Chris Williams, MB BChir, lead author of the study, which appears Oct. 8 in Nature Communications. "ChatGPT can answer medical exam questions and help draft clinical notes, but it’s not currently designed for situations that call for multiple considerations, like the situations in an emergency department."

Recently, Williams showed that ChatGPT, a large language model (LLM) that can be used for researching clinical applications of AI, was slightly better than humans at determining which of two emergency patients was most acutely unwell, a straightforward choice between patient A and patient B.

With the current study, Williams challenged the AI model to perform a more complex task: providing the recommendations a physician makes after initially examining a patient in the ED. This includes deciding whether to admit the patient, get x-rays or other scans, or prescribe antibiotics.

For each of the three decisions, the team compiled a set of 1,000 ED visits to analyze from an archive of more than 251,000 visits. The sets had the same ratio of “yes” to “no” responses for decisions on admission, radiology and antibiotics that are seen across UCSF Health’s Emergency Department.

Using UCSF’s secure generative AI platform, which has broad privacy protections, the researchers entered doctors’ notes on each patient’s symptoms and examination findings into ChatGPT-3.5 and ChatGPT-4. Then, they tested the accuracy of each set with a series of increasingly detailed prompts.

Overall, the AI models tended to recommend services more often than was needed. ChatGPT-4 was 8% less accurate than resident physicians, and ChatGPT-3.5 was 24% less accurate.

Williams said the AI’s tendency to overprescribe could be because the models are trained on the internet, where legitimate medical advice sites aren’t designed to answer emergency medical questions but rather to send readers to a doctor who can.

"These models are almost fine-tuned to say, 'seek medical advice,' which is quite right from a general public safety perspective," he said. "But erring on the side of caution isn’t always appropriate in the ED setting, where unnecessary interventions could cause patients harm, strain resources and lead to higher costs for patients."

He said models like ChatGPT will need better frameworks for evaluating clinical information before they are ready for the ED. The people who design those frameworks will need to strike a balance between making sure the AI doesn't miss something serious, while keeping it from triggering unneeded exams and expenses.

This means researchers developing medical applications of AI, along with the wider clinical community and the public, need to consider where to draw those lines and how much to err on the side of caution.

"There's no perfect solution," he said, "But knowing that models like ChatGPT have these tendencies, we’re charged with thinking through how we want them to perform in clinical practice."

Williams CYK, Miao BY, Kornblith AE, Butte AJ.
Evaluating the use of large language models to provide clinical recommendations in the Emergency Department.
Nat Commun. 2024 Oct 8;15(1):8236. doi: 10.1038/s41467-024-52415-1

Most Popular Now

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...