AI Analysis of PET/CT Images can Predict Side Effects of Immunotherapy in Lung Cancer

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious side effect of immunotherapy in lung cancer.

Immunotherapy has dramatically improved the treatment outcomes of primary lung cancer; however, it sometimes causes a serious side effect called interstitial lung disease. Interstitial lung disease is characterized by scarring (fibrosis) of the lungs and may be life-threatening owing to respiratory failure. Unfortunately, it is difficult to predict the occurrence of interstitial lung disease induced by immunotherapy. Accordingly, effective methods for predicting the risk of developing interstitial lung disease after immunotherapy are required.

This retrospective study investigated 165 patients with primary lung cancer who received immunotherapy at Niigata University Medical and Dental Hospital. As it is suggested that interstitial lung disease arises when inflammatory cells activated through immunotherapy damage healthy lung as well as cancer cells, the researchers hypothesized that patients with severe inflammation in healthy lungs prior to immunotherapy are more likely to develop interstitial lung disease after the treatment. Dr. Watanabe and his teams focused on PET/CT scan, a nuclear imaging test that is able to detect inflammation in the whole body. The researchers quantified the degree of inflammation in noncancerous lungs, namely lung regions without cancer, using AI analysis of PET/CT images. The study demonstrated that the risk of developing interstitial lung disease after immunotherapy is approximately 6.5 times higher in patients with high inflammation in the noncancerous lung than in those with low inflammation.

Dr. Yamazaki says "PET/CT is generally performed to detect cancer metastasis, but it would potentially be useful for estimating the risks of side effects associated with cancer treatment. The results of our study may not only help to predict the occurrence of interstitial lung disease after immunotherapy, but also to elucidate the mechanism of this serious side effect. We should conduct a multicenter prospective study for further investigation."

Yamazaki M, Watanabe S, Tominaga M, Yagi T, Goto Y, Yanagimura N, Arita M, Ohtsubo A, Tanaka T, Nozaki K, Saida Y, Kondo R, Kikuchi T, Ishikawa H.
18F-FDG-PET/CT Uptake by Noncancerous Lung as a Predictor of Interstitial Lung Disease Induced by Immune Checkpoint Inhibitors.
Acad Radiol. 2024 Sep 2:S1076-6332(24)00606-8. doi: 10.1016/j.acra.2024.08.043

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...