Welcome Evo, Generative AI for the Genome

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If a tool like ChatGPT can write original sentences based on patterns found in massive collections of previously written words, what happens if we replace written words with genetic code?

The answer to that seemingly simple question has become Evo, a generative AI model that writes genetic code. Hie and his colleagues at the Arc Institute and the University of California, Berkeley, introduced Evo in a paper in the journal Science. Hie says that researchers might use Evo to understand how microbial and viral genomes work, to fashion new proteins (i.e., drugs) that never existed before, and to reprogram microbes to accomplish remarkable tasks, from improving photosynthesis for carbon sequestration and higher crop yields to gobbling up microplastics from the oceans.

"Instead of having to use brute force testing or mining promising sequences from nature, all of which are quite unpredictable, we now have an AI model for generating systems of interest, allowing researchers to focus only on the most promising possibilities," said Hie, assistant professor of chemical engineering. "Evo puts the genomes of whole lifeforms within reach and accelerates the bioengineering design process."

Evo could even lead to deeper understanding of evolution itself, new understandings of genetic diseases, and new treatments – all achieved on a computer rather than in a lab.

Natural insight

The inspiration comes from nature itself. The instructions of all life are encoded in DNA. Better understanding of the complex interplay of DNA, RNA, and bioproteins - and how they have evolved over time - will lead to deeper knowledge and the ability to reprogram the microbes into useful technologies.

But all is not so easy as it seems. Even simple microbes have complex genomes with millions of base pairs. Two of Evo’s key advances compared to similar existing tools are expanding the length of sequences models can process at once from roughly 8,000 base pairs to more than 131,000 base pairs - known as the "context window" - and improving the resolution to the scale of individual nucleotides, the building blocks of DNA.

Evo was trained on the genomes of 80,000 microbes and 2.7 million prokaryotic and phage genomes, covering 300 billion nucleotides, as well as on smaller DNA loops known as plasmids. To preempt the use of Evo for the development of bioweapons, however, the team had to exclude the genomes of viruses known to infect humans and certain other organisms.

Evo is able to learn how small changes in nucleotide sequences affect the evolutionary fitness of whole organisms and generate DNA sequences of more than 1 million base pairs - more than seven times the context window of 131,000 base pairs, Hie added. By comparison, the smallest “minimal” bacterial genomes are about 580,000 base pairs in length, the researchers note.

Proof of concept

As a proof of concept of Evo's design capabilities, Hie and colleagues prompted Evo to generate novel synthetic CRISPR-Cas molecular complexes and systems. CRISPR-Cas systems are like tiny molecular machines that use proteins and RNA in tandem to edit DNA. In response to that prompt, Evo created a fully functional, previously unknown CRISPR system that was validated after testing 11 possible designs. Evo's CRISPR exploration is the first example of simultaneous protein-RNA codesign using a language model, Hie noted.

Next up, Hie is already working on expanding Evo's ability to process larger genomic sequences as well as to achieve greater control over its outputs, as well as to broaden his research beyond the microbial world to human and other genomes.

"Evo opens up a lot of very interesting research at the intersection of machine learning and biology," Hie said. "It creates opportunities for discoveries that were previously unimaginable and accelerates our ability to engineer life itself."

Evo is open source and publicly available for interested researchers to download.

The research was supported by the Fannie and John Hertz Foundation; National Science Foundation Graduate Fellowship Program; National Center for Advancing Translational Sciences of the National Institutes of Health; National Institutes of Health; National Science Foundation grants; US DEVCOM Army Research Laboratory grants; Office of Naval Research; Stanford HAI; NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for Research program, the Stanford Data Science Initiative, and members of the Stanford DAWN project: Meta, Google, and VMWare; the Arc Institute; the Rainwater Foundation; the Curci Foundation; Rose Hill Investigators Program; V. and N. Khosla; S. Altman; anonymous gifts to the Hsu laboratory; V. Gupta; and R. Tonsing.

Nguyen E, Poli M, Durrant MG, Kang B, Katrekar D, Li DB, Bartie LJ, Thomas AW, King SH, Brixi G, Sullivan J, Ng MY, Lewis A, Lou A, Ermon S, Baccus SA, Hernandez-Boussard T, Ré C, Hsu PD, Hie BL.
Sequence modeling and design from molecular to genome scale with Evo.
Science. 2024 Nov 15;386(6723):eado9336. doi: 10.1126/science.ado9336

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...