From Text to Structured Information Securely with AI

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have now been able to show that local LLMs can help structure radiological findings in a privacy-safe manner, with all data remaining at the hospital. They compared various LLMs on public reports without data protection and on data-protected reports. Commercial models that require data transfer to external servers showed no advantage over local, data protection-compliant models. The results have now been published in the journal Radiology.

Everything has to be in its place. Not only on the operating table or in the office, but also with data. Structured reports, for example, are helpful for doctors as well as for further use in research in databases. Later, such structured data can also be used to train other AI models for image-based diagnosis. In practice, however, reports are usually written in free text form, which complicates further use. This is exactly where the application of AI, more precisely LLMs, comes in.

LLMs can be divided into two categories: The closed-weights models are the commercial, well-known AI variants that are also used in chatbots such as Chat-GPT. Open-weights models, such as Meta's Llama models, are an option that can be run on internal clinic servers and can even be trained further. When applying these models, all data remain stored locally, which makes the use of open LLMs advantageous in terms of data security. "The problem with commercial, closed models is that in order to use them, you have to transfer the data to external servers, which are often located outside the EU. This is not recommended for patient data," emphasizes Prof. Julian Luetkens, comm. Director of the Clinic for Diagnostic and Interventional Radiology at the UKB.

"But are all LLMs equally suitable for understanding and structuring the medical content of radiological reports? To find out which LLM is suitable for a clinic, we tested various open and closed models," explains Dr. Sebastian Nowak, first and corresponding author of the study and postdoc at the University of Bonn's Clinic for Diagnostic and Interventional Radiology at the UKB. "We were also interested in whether open LLMs can be developed effectively on site in the clinic with just a few already structured reports."

Therefore, the research team carried out an analysis of 17 open and four closed LLMs. All of them analyzed thousands of radiology reports in free text form. Public radiology reports in English, without data protection, were used for the analysis as well as data-protected reports from the UKB in German.

The results show that in the case of the reports without data protection, the closed models have no advantage over some of the open LLMs. When applied directly without training, larger, open LLMs were better than smaller, open LLMs. The use of already structured reports as training data for open LLMs led to an effective improvement in the quality of information processing, even with just a few manually prepared reports. The training also reduced the difference in accuracy between large and small LLMs.

"In a training session with over 3,500 structured reports, there was no longer any relevant difference between the largest open LLM and a language model that was 1,200 times smaller," says Nowak. "Overall, it can be concluded that open LLMs can keep up with closed ones and have the advantage of being able to be developed locally in a data protection-safe manner."

This discovery has the potential to unlock clinical databases for comprehensive epidemiological studies and research into diagnostic AI. "Ultimately, this will benefit the patient, all while strictly observing data protection," explains Nowak. "We want to enable other clinics to use our research directly and have therefore published the code and methods for LLM use and training under an open license.

For further information, please visit:
https://github.com/ukb-rad-cfqiai/LLM_based_report_info_extraction/

Nowak S, Wulff B, Layer YC, Theis M, Isaak A, Salam B, Block W, Kuetting D, Pieper CC, Luetkens JA, Attenberger U, Sprinkart AM.
Privacy-ensuring Open-weights Large Language Models Are Competitive with Closed-weights GPT-4o in Extracting Chest Radiography Findings from Free-Text Reports.
Radiology. 2025 Jan;314(1):e240895. doi: 10.1148/radiol.240895

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...