AI Model Predicting Two-Year Risk of Common Heart Disorder can Easily be Integrated into Healthcare Workflow

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study demonstrates that UNAFIED, a highly accurate artificial intelligence (AI) prediction model which uses machine learning to parse information acquired from a patient's electronic health record (EHR) to predict whether a patient has or might develop detectable AFib within the following two years, can be easily integrated into the healthcare workflow.

UNAFIED is an acronym for Undiagnosed Atrial Fibrillation prediction using Electronic health Data.

Testing implementation and performance in real world conditions, the researchers reported that physicians in a busy medical practice in the Eskenazi Health system in Indianapolis who regularly used the UNAFIED risk prediction model found it easy to use and not time consuming. Most significantly, physicians participating in the study indicated that they believed it helped improve patient care. The non-invasive, inexpensive approach provides a practical option for proactive screening of patients, especially the large number of individuals at elevated risk for AFib.

Individuals at higher risk for AFib include adults living with obesity, many types of heart disease, Type 2 diabetes or sleep apnea, as well those who are smokers or binge alcohol drinkers or have a family history of the disease.

"Unfortunately, atrial fibrillation can be silent until it's disastrous. We developed and validated this risk prediction model to find the instances where atrial fibrillation was silent but still occurring or likely to occur," said Regenstrief Institute Research Scientist Randall Grout, M.D., M.S. "The primary goals of the UNAFIED model are preventing very significant negative medical outcomes and even death.

"Using such indicators as sex, height and weight, prior diagnoses of heart or kidney disease - information already easily available to the clinician - our model performed at the leading edge. It doesn't require extra steps, making it easy for clinicians to integrate into their practice."

Dr. Grout is the first author of the UNAFIED clinical implementation study, a co-author of the national validation study and the first author of the development study. In addition to his Regenstrief appointment, Dr. Grout is a faculty member of the Indiana University School of Medicine and chief health informatics officer at Eskenazi Health.

In the study of clinical implementation, UNAFIED was integrated into the EHR system of a busy cardiology clinic, enabling the algorithm upon which UNAFIED is based to calculate the predicted risk for each patient individually. If the risk factor was found to be above a certain threshold, the model provided visual indicators to the cardiologist that the patient might have an elevated risk of undetected AFib or of developing AFib within the next two years. The workflow also provides recommendations such as performing follow-up heart rhythm and other testing as well as presenting ways to document within the EHR for higher risk or that a patient may actually be experiencing AFib, even if the condition had been previously ruled out. Respectful of professional expertise and experience, the model offers the physician the option of overriding or bypassing the prompts.

According to the Centers for Disease Control and Prevention, there are more than 454,000 hospitalizations with AFib as the primary diagnosis in the U.S. annually. The condition contributes to an estimated 158,000 deaths in the U.S. each year.

Dr. Grout notes that while the algorithm on which UNAFIED is based was built to predict undetected AFib, lessons learned from the development of this model could be employed to develop algorithms for models focused on other conditions as well as specific populations or geographic areas. While some of the predictor variables used may be the same in many or most models - for instance age of patient - others, such as a history of a certain diagnoses, could be customized for the specific disease under scrutiny.

Grout RW, Ateya M, DiRenzo B, Hart S, King C, Rajkumar J, Sporrer S, Torabi A, Walroth TA, Kovacs RJ.
Screening for undiagnosed atrial fibrillation using an electronic health record‒based clinical prediction model: clinical pilot implementation initiative.
BMC Med Inform Decis Mak. 2024 Dec 18;24(1):388. doi: 10.1186/s12911-024-02773-z

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...