DeepSeek: The "Watson" to Doctors - from Assistance to Collaboration

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture of Experts (MoE) architecture, multimodal data fusion capabilities, and significantly reduced training costs (over 90% lower than comparable models), DeepSeek achieves performance on par with OpenAI’s GPT-4o-mini. Through cutting-edge NLP techniques, DeepSeek can rapidly and accurately extract valuable insights from massive datasets, providing users with intelligent information retrieval and analytical solutions. These capabilities unlock new possibilities in healthcare, offering efficient support to both doctors and patients.

In the medical field, clinicians are akin to the legendary detective Sherlock Holmes, while DeepSeek plays the role of "John Watson" - not just an assistant, but also a complement to their thinking and a bridge to humanized care. With its powerful data analysis and reasoning capabilities, DeepSeek helps doctors identify potential “blind spots”, provides comprehensive diagnostic recommendations, optimizes doctor-patient communication, and enhances medical efficiency. Specifically, DeepSeek offers the following benefits: (I) supplementing professional knowledge: through deep learning and multimodal data processing, DeepSeek delivers big data-driven insights, enabling doctors to better understand complex medical conditions. (II) Humanizing healthcare interactions: by enhancing patient education and doctor-patient communication, DeepSeek facilitates more effective interactions, improving the overall healthcare experience. (III) Identifying blind spots: much like Watson, who is often humorously credited with “spotting the blind spots”, DeepSeek’s comprehensive algorithms help doctors uncover details that might otherwise be overlooked. For instance, in diagnosing rare diseases or analyzing complex cases, DeepSeek can identify potential disease features or risk factors, offering doctors a supplementary perspective. (IV) Documentation and organization: just as Watson documented Holmes’ deductive processes for posterity, DeepSeek generates medical record templates and follow-up plans, helping doctors efficiently manage patient information while ensuring data integrity and traceability. Thus, DeepSeek is not merely an intelligent assistant but a collaborative partner in medical practice.

Doctors can utilize DeepSeek for diagnostic and therapeutic assistance while ensuring information privacy protection. Hospitals can also deploy DeepSeek locally and customize its development, training AI models with real-world data to improve the accuracy of diagnoses and treatment recommendations. Below are specific application scenarios for DeepSeek in medical practice: (I) enhancing clinical decision-making efficiency: in clinical settings, doctors can input patient symptoms, test results, and other relevant information to receive diagnostic suggestions and treatment plans from DeepSeek. For instance, when dealing with complex cases, DeepSeek integrates patient medical history and the latest medical research to provide comprehensive decision support. It can also tailor personalized treatment plans based on individual patient characteristics and needs. Additionally, DeepSeek’s data collection and processing capabilities can automatically generate structured medical record drafts, significantly reducing the documentation burden on doctors. (II) Supporting research and academia: DeepSeek can rapidly retrieve the latest medical literature and clinical guidelines, assisting doctors in conducting literature reviews and analyzing research data. This enables them to identify solutions for challenging cases and even propose new scientific questions and research directions. Through human-AI collaboration, doctors can expand their cognitive boundaries, while DeepSeek's "white-box" interpretability design enhances their understanding of AI reasoning processes and facilitates learning from its insights. (III) Optimizing patient management: DeepSeek can generate personalized patient education programs, helping doctors communicate more effectively with patients and improve treatment adherence. Through its intelligent analysis, doctors can more efficiently manage patient follow-ups and rehabilitation plans, ensuring continuity and effectiveness of care.

At the same time, doctors should actively guide patients in using DeepSeek to improve healthcare efficiency and health management capabilities. This includes: (I) assisting healthcare decision-making: patients can use DeepSeek to preliminarily understand potential diseases corresponding to their symptoms, as well as relevant tests and treatment recommendations. For example, before visiting a doctor, patients can use DeepSeek to interpret lab reports and gain initial diagnostic insights. Additionally, patients can access health science knowledge through DeepSeek to enhance their health literacy and even evaluate the expertise of potential doctors and their suitability for the condition. (II) Optimizing doctor-patient communication: by using DeepSeek, patients gain a deeper understanding of their conditions, enabling more efficient communication with doctors and reducing unnecessary misunderstandings and anxiety. For instance, DeepSeek can generate condition summaries to help patients clearly describe their symptoms to doctors. It can also explain medical terminology, allowing patients to better comprehend diagnoses and treatment plans.

Despite its immense potential in healthcare applications, DeepSeek still faces several challenges that require further optimization: (I) data quality issues: the completeness and accuracy of medical data are critical factors influencing DeepSeek's effectiveness. Irregular data entry and inconsistent collection standards may lead to biases in model analysis and diagnosis. To address this, DeepSeek needs to integrate professional medical databases (such as PubMed) and incorporate more high-quality cases and information to ensure data diversity and representativeness. Additionally, data cleaning and standardization processes should be implemented to enhance data quality. (II) Algorithm stability and accuracy: when dealing with rare diseases (e.g., those with an incidence rate of <1/100,000) or complex cases, the scarcity of relevant data may prevent DeepSeek from accurately identifying disease characteristics, resulting in unreliable diagnoses. To improve performance, DeepSeek can expand training datasets for rare diseases or adopt transfer learning techniques. Furthermore, rigorous testing and validation are necessary to ensure the reliability of model updates and optimizations in clinical practice. (III) Multimodal data fusion: healthcare involves diverse data types (e.g., images, text, physiological signals), but DeepSeek still faces technical bottlenecks in multimodal data fusion, limiting its ability to integrate data effectively for comprehensive diagnostic and treatment recommendations. To overcome this, hierarchical attention mechanisms (e.g., cross-modal attention weight allocation between images and text) can be employed, along with time-series modeling to capture dynamic features of disease progression. (IV) Lack of automated information collection: currently, DeepSeek relies on user-initiated input, creating barriers to usability. To reduce user burden and improve system accessibility, an active information collection approach is needed. For example, clinical decision tree models can be introduced to develop proactive questioning capabilities during doctor-patient interactions, guiding patients to provide key information and enhancing data collection efficiency. (V) Dynamic update delays: the integration of the latest clinical guidelines and research findings often requires manual review, leading to delays of 1-3 months, which may compromise the timeliness of the model. To address this, continuous learning mechanisms should be implemented, enabling the model to dynamically incorporate the most recent data.

In summary, DeepSeek has brought significant efficiency improvements and convenience to the healthcare sector. However, its application must be integrated with professional medical knowledge and real-world scenarios to ensure safety and accuracy. Looking ahead, DeepSeek is poised to make breakthroughs in personalized medicine, telemedicine, and public health management. By continuously improving data quality, privacy protection, technical optimization, ethical and legal compliance, and industry acceptance, DeepSeek will become a reliable partner for both doctors and patients, driving the intelligent transformation of healthcare. Just as Watson grew under Holmes’ guidance, DeepSeek will continue to refine itself in medical practice, ultimately achieving the leap from assistance to collaboration.

Liang W, Chen P, Zou X, Lu X, Liu S, Yang J, Li Z, Zhong W, Zhang K, Liang Y, He J, Zhong N.
DeepSeek: the "Watson" to doctors-from assistance to collaboration.
J Thorac Dis. 2025 Feb 28;17(2):1103-1105. doi: 10.21037/jtd-2025b-03

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...