EU Project Wears Technology on Its Sleeve

If the move from the typewriter to the computer was a revolution, then the next stage in evolution could see humans interacting with computers inserted into their clothes. The EU-funded WearIT@work project has imagined just such a scenario. Its researchers have been busy exploring a range of applications where wearable technology could facilitate a new form of human-computer interaction to significantly improve the productivity of workers and even help save lives.

"If you have a desktop application, then there is always a screen, a keyboard and a computer unit, but if you have a wearable computing solution, then it can be completely different," explains Dr Michael Lawo, the coordinator of the WearIT@work project from the University of Bremen, Germany. "You can have speech control in one instance, gesture control in another, though the application should always be the same," he adds.

Along with partners from some of the world's most famous IT companies, Dr Lawo has developed the Open Wearable Computing Framework, which comprises a central, easily wearable and hardware-independent computing unit which gives access to an Information and Communication Technology (ICT) environment. Some of the basic components include wireless communication, positioning systems, speech recognition, interface devices, and low-level software platforms or toolboxes allowing these features to seamlessly work together.

The pattern of this EU-funded project is woven as much out of applications as it is technology. It uses a number of commercial, off-the-shelf components and brings them together to create a new tool with the potential to revolutionise the way we work.

"Wearable computing is a completely new working paradigm," says Dr Lawo. "It is a technology which can support you in a particular environment. Instead of working at the computer, you are directly supported by the technology, a bit like when you are driving a car and you get information from the navigation system supporting you in your primary tasks."

WearIT@work, the largest civilian wearable computing project in the world, is currently being tested across four different fields. These include aircraft maintenance, emergency response, car production and healthcare. Pilot projects in the areas of bush-fire prevention, e-inclusion and cultural heritage have also been launched recently.

In most test cases, the technology is being applied to people who are not accustomed to using computers in their workplace, such as blue-collar workers for example. "The basic idea was to make the technology available to the workers and directly improve productivity," explains Dr Lawo.

"We address fields where there are no similar applications today. Take the example of an aircraft technician. There is a person doing paperwork who has to find the relevant documentation on a computer. He has to find the aircraft maintenance manual and the parts manual, and produce a printout. These documents are handed over to the technician who then goes to the aircraft to do his work. He then has to write a report on a sheet of paper. And that is the way things work today. What we are doing is giving the worker support and direct access to the ICT system from the workplace. We get rid of the paper," he adds.

With a considerable number of potential applications, perhaps the most challenging test case for the project is the one involving emergency response teams, in collaboration with the Paris Fire Brigade. The technology helps support the communication, collaboration and information processes of these rescue forces.

The efficiency and safety of firemen can be considerably improved by a number of light, easy-to-use and resistant devices, such as biosensors monitoring their physiological condition and improved localisation of hazards, personnel and retreat paths.

According to Dr Lawo, the technology has largely been well received by workers. "They recognise that this is a new technology where you can monitor working activities, but they do not hesitate to use it, and they see the advantage of it," he says.

WearIT@work already has some 42 partners, including IT giants Microsoft, Hewlett-Packard and Siemens, but Lawo says the project is always on the lookout for new ventures.

"Research will continue for components or for positioning systems. There is a lot of further research that can be carried out, but you can basically already do quite a lot with the application and with the technology that already exists," he confirms.

Testing is due to continue until mid-2008 and will be followed by an initial 12-month period where the focus will shift to technology transfer and exploitation. "What we really want to do is introduce the system into everyday working methods," Dr Lawo concludes.

The ambitious project is funded under the 'Information society technologies' priority of the EU's Sixth Framework Programme (FP6) to the tune of €23 million.

For further information, please visit:
http://www.wearitatwork.com

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...