Project to Develop Bat-Like Sonar for Robotic Systems

A new EU-funded project will delve into the mysteries of bat sonar. Building on the findings of the CIRCE (Chiroptera Inspired Robotic Cephaloid) and the CILIA (Customized Intelligent Life-Inspired Arrays) projects, the ChiRoPing project will attempt to develop two biomimetic models of bats, using reverse engineering.

Ultimately, the aim is to find a way to engineer versatile and robust systems that are 'able to respond sensibly to challenges not precisely specified in their design', the project partners explain. A sonar component to these systems could complement vision and make it possible to use them in situations where vision is limited or they have to operate blind.

The two models, to be designed by roboticists and bat ethologists in close cooperation, will be based on the common big-eared bat (Micronycteris microtis) and the long-legged bat (Macrophyllum macrophyllum), two bat species indigenous to South and Central America, as well as Daubenton's bat (Myotis daubentonii), a bat species found throughout Europe, but also as far as Japan and Korea, and a member of the Bulldog or Fisherman bat family (Noctilio lepornius).

The researchers chose bats for inspiration because 'their astounding diversity of diet and habitat attests to their success in integrating morphological, acoustic and behavioural parameters to enable robust and versatile hunting behaviours - the bat equivalent of tangible object handling'.

Before actually starting the engineering part of the project, however, the scientists will have to identify and measure the relevant acoustic and morphological parameters of the bat species in question and reconstruct the 'bat's acoustic experience as it flies through natural hunting tasks'. So far, little is known about exactly how bats use their skills to make acoustic, behavioural or morphological choices when hunting in their varied habitats.

On the basis of the data gathered, the project partners plan to create computational models of how bats coordinate their choices, and later implement robotic systems which will be evaluated from an engineering standpoint as well as a biological point of view.

However, the ChiRoPing researchers will not have to start from scratch as the CIRCE project already developed and constructed a bionic bat head, consisting of an emission/reception system capable of generating and processing bat vocalisations in real-time. The head, which will be used in the framework of the new project, will help to systematically investigate how the world is not just perceived, but actively explored by the animals.

The ChiRoPing project is set to start on 1 February. It will receive ¿2.5 million in funding from the EU under the Seventh Framework Programme (FP7) and bring together four partner universities from Denmark, Belgium, the UK and Germany.

For further information, please visit:
http://www.chiroping.org

Copyright ©European Communities, 2008
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...