Siemens Presents New Product Lines for Angiography

Siemens HealthcareSiemens Healthcare has developed a revolutionary new X-ray tube and detector technology for its Artis Q and Artis Q.zen angiography systems to improve minimally invasive therapy of diseases such as coronary artery disease, stroke and cancer. In both the Artis Q and Artis Q.zen series, the new X-ray tube can help to identify small vessels up to 70 percent better than conventional X-ray tube technology. The Artis Q.zen combines this innovative Xray source with a new detector technology that supports interventional imaging in ultra-low dose ranges. This protects patients, doctors and medical staff, especially during longer interventions. With these new developments, presented for the first time at the 98th Congress of the Radiological Society of North America (RSNA), Siemens Healthcare has once again demonstrated its innovative strength and market competitiveness as part of its Agenda 2013 global Sector initiative.

Two hardware components are crucial for angiographic image quality: the X-ray tube and the detector. The X-rays emitted by the tube pass through the patient and hit the detector, which converts them to image signals.

The second generation of Siemens' flat emitter technology is key to the advances made in the Xray tube for the Artis Q and Artis Q.zen product lines. Instead of the coiled filaments used in conventional X-ray tubes, flat emitter technology is used exclusively in the new tube to emit electrons. Flat emitters enable smaller quadratic focal spots that lead to improved visibility of small vessels by up to 70 percent. Both physicians and patients benefit from a high level of detail in imaging-supported interventional therapy. Neurologists can more precisely measure the blood circulation in specific areas of the brain, for example; while stenoses in the heart's smallest blood vessels can be spotted in coronary angiography.

Examinations using ultra-low dose radiation
The Artis Q.zen series combines the X-ray tube with a detector technology that allows detection at ultra-low radiation levels. Artis Q.zen imaging can use doses as low as half the usual levels normally applied in angiography. This improvement is the result of several innovations, including a fundamental change in detector technology. Until now, almost all detectors have been based on amorphous silicon. The new crystalline silicon structure of the Artis Q.zen detector is more homogenous, allowing for more effective amplification of the signal, greatly reducing the electronic noise even at ultra-low doses.

The Artis Q.zen was developed to support better imaging quality at ultra-low-dose ranges, reducing the radiation exposure of patients, physicians, and medical staff. This is especially important in dose-sensitive application fields such as pediatric cardiology and radiology, or electrophysiology, which is being used on more and more patients as rates of cardiac arrhythmia increase in an aging population.

Innovative applications for interventional imaging
In addition to the hardware innovations are several software applications that improve interventional imaging. In coronary artery disease treatment, the applications allow precise correlation of angiography images with ultrasound images taken by a probe inside the coronary arteries. Stents are imaged in real-time during therapy, with motion stabilization created by simultaneous correction for the heartbeat.

Other new 3D applications can image the smallest structures inside the head. Their high spatial resolution is crucial for imaging intracranial stents or other miniscule structures, such as the cochlea in the inner ear. Moving organs such as the lungs can be imaged in 3D in less than 3 seconds, reducing the number of motion artifacts and the amount of contrast agent required. Through visualization and measurement of blood volumes in the liver or other organs, Siemens' functional 3D imaging provides a basis for planning therapies such as chemo-embolization of hepatic tumors.

Launched in November 2011 by the Siemens Healthcare Sector, "Agenda 2013" is a two-year global initiative to further strengthen the Healthcare Sector's innovative power and competitiveness. Specific measures will be implemented in four fields of action: Innovation, Competitiveness, Regional Footprint, and People Development.

Related news articles:

About Siemens Healthcare
The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source - from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros.

Most Popular Now

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...

Bayer Acquires HiDoc Technologies and Ca…

Bayer is today announcing that it plans to acquire HiDoc Technologies GmbH in the first quarter of 2025 and to start commercialization of the digital health application, Cara Care®. Cara...

AI-Based Chatbot Created for Bioimage An…

Scientists from Universidad Carlos III de Madrid (UC3M), together with a research team from Ericsson and the KTH Royal Institute of Technology in Sweden, have developed an artificial intelligence-based software...

Analyzing Multiple Mammograms Improves B…

A new study from Washington University School of Medicine in St. Louis describes an innovative method of analyzing mammograms that significantly improves the accuracy of predicting the risk of breast...

Emotional Cognition Analysis Enables Nea…

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain...