Quick Detection of Periodontitis Pathogens

Twelve million Germans suffer from periodontitis, an inflammation that can lead to the loss of teeth if left untreated. A new diagnostic platform enables the pathogens to be detected quickly, enabling dentists to act swiftly to initiate the right treatment. Bleeding gums during tooth brushing or when biting into an apple could be an indication of periodontitis, an inflammatory disease of the tissues that surround and support the teeth. Bacterial plaque attacks the bone, meaning teeth can loosen over time and in the worst case even fall out, as they are left without a solid foundation to hold them in place. Furthermore, periodontitis also acts as a focal point from which disease can spread throughout the entire body: If the bacteria, which can be very aggressive, enter the bloodstream, they can cause further damage elsewhere. Physicians suspect there is a connection between periodontitis pathogens and the sort of cardiovascular damage that can cause heart attacks or strokes. In order to stop the source of inflammation, dentists remove dental calculus and deposits from the surface of teeth, but this is often not enough; particularly aggressive bacteria can only be eliminated with antibiotics.

Of the estimated 700 species of bacteria found in the mouth cavity, there are only eleven that are known to cause periodontal disease in particular; of these, some are deemed to be severely pathogenic. If these biomarkers are present in the gingival sulcus – the small gap around the base of the tooth - then the patient is at high risk of a severe form of periodontitis. But the only way to find out is by conducting a bacteria test. The problem is that current methods for identifying pathogens are time-consuming and must be carried out in an external contract laboratory. Conventional bacterial analysis using microbial culture carries the risk of bacteria being killed as soon as they come into contact with oxygen.

Bacterial analysis in less than 30 minutes
A new mobile diagnostic platform is designed to speed up identification of the eleven most relevant periodontitis pathogens considerably. Scientists at the Fraunhofer Institute for Cell Therapy and Immunology IZI in Leipzig have collaborated with two companies, BECIT GmbH and ERT-Optik, to develop a lab-on-a-chip module called ParoChip. In future this will allow dentists and medical labs to prepare samples quickly and then analyze the bacteria. All the steps in the process - the duplication of DNA sequences and their detection - take place directly on the platform, which consists of a disk-shaped microfluidic card that is around six centimeters in diameter. "Until now, analysis took around four to six hours. With ParoChip it takes less than 30 minutes. This means it’s possible to analyze a large number of samples in a short amount of time," says Dr. Dirk Kuhlmeier, a scientist at the IZI.

The analysis is conducted in a contactless and fully automated manner. Samples are taken using sterile, toothpick-shaped paper points, after which the bacteria are removed from the point and their isolated DNA injected into reaction chambers containing dried reagents. There are eleven such chambers on each card, each featuring the reagent for one of the eleven periodontal pathogens. The total number of bacteria is determined in an additional chamber, via polymerase chain reaction (PCR). This method allows millions of copies of even tiny numbers of pathogen DNA sequences to be made. In order to generate the extremely quick changes in temperature that are required for PCR, the disk-shaped plastic chip is attached to a metal heating block with three temperature zones and mechanically turned so it passes over these zones. This causes a fluorescent signal to be generated that is measured by a connected optical measuring device featuring a fluorescence probe, a photo detector and a laser diode. The key benefit is that the signal makes it possible not only to quantify each type of bacterium and thus determine the severity of the inflammation, but also to establish the total number of all the bacteria combined. This enables doctors to fine-tune an antibiotic treatment accordingly.

"As the connected optical measuring system allows us to quantify bacteria, ParoChip is also suited to the identification of other bacterial causes of infection, such as food-borne pathogens or those that lead to sepsis," says Kuhlmeier, who goes on to emphasize further advantages of the compact diagnostic platform: "Using ParoChip does away with many of the manual steps that are a necessary part of current bacteria tests. The synthetic disks can be produced cheaply and disposed of after use in the same way as disposable gloves." Already available as a prototype, ParoChip is initially intended for use in clinical laboratories; however it could also be used by dentists to carry out inhouse analysis of patient samples in their own practice.

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...