Detecting Software Errors via Genetic Algorithms

According to a current study from the University of Cambridge, software developers are spending about the half of their time on detecting errors and resolving them. Projected onto the global software industry, according to the study, this would amount to a bill of about 312 billion US dollars every year. "Of course, automated testing is cheaper", explains Andreas Zeller, professor of Software Engineering at Saarland University, as you could run a program a thousand times without incurring any charges. "But where do these necessary test cases come from?" asks Zeller. "Generating them automatically is tough, but thinking of them yourself is even tougher."

In cooperation with the computer scientists Nikolas Havrikov and Matthias Höschele, he has now developed the software system "XMLMATE". It generates test cases automatically and uses them to test the given program code automatically. What is special about it is that the only requirement the program to be tested has to meet is that its input must be structured in a certain way, since the researchers use it to generate the initial set of test cases. They feed them to the so-called genetic algorithm on which the testing is based. It works similarly to biological evolution, where the chromosomes are operating as the input. Only the input that covers a significant amount of code which has not been executed yet survives. As Nikolas Havrikov explains their strategy: "It is not easy to detect a real error, and the more code we are covering, the more sure we can be that more errors will not occur." Havrikov implemented XMLMATE. "As we use the real existing input interface, we make sure that there are no false alarms: Every error found can also happen during the execution of the program," adds Zeller.

The researchers have unleashed their software on open source programs users are already working with in daily life. With their program they detected almost twice as many fatal errors as similar test methods that only work with randomly generated input. "But the best thing is that we are completely independent from the application area. With our framework, we are not only able to test computer networks, the processing of datasets, websites or operating systems, but we can also examine software for sensors in cars," says Zeller.

The computer scientists in Saarbrücken developed XMLMATE in the Java programming language. The input for the software to test is defined according to the description language XML, so the existence of a XML schema is helpful. Since XML is standardized and considered as a kind of world language between input formats, most of the programming input fits XMLMATE and if not, it can be quickly converted to do so with the corresponding tools.

The Department of Computer Science represents the center of computer science research in Saarbrücken. Seven other worldwide renowned research institutes are close by the department: The Max Planck Institutes for Informatics and for Software Systems, the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the Center for IT Security, Privacy and Accountability (CISPA) and the Cluster of Excellence "Multimodal Computing and Interaction".

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...