Researchers Call for Support for Data in the Cloud to Facilitate Genomics Research

In the journal Nature prominent researchers from Canada, Europe and the U.S. have made a powerful call to major funding agencies, asking them to commit to establishing a global genomic data commons in the cloud that could be easily accessed by authorized researchers worldwide.

This would increase access to the data for researchers, reduce the time and cost associated with transferring and storing data on local servers and accelerate genomics research worldwide. Storing data in the cloud has been shown to be as secure, if not more secure, than storing it locally.

With a typical university connection it can take months to download datasets from major international projects like the International Cancer Genome Consortium (ICGC) and the hardware costs associated with storing and processing those data can also prove quite expensive.

With cloud computing a data set from a big genome project can be executed in days, at a fraction of the price.

The authors propose that funding agencies request that major data sets be uploaded into the cloud and that they pay for its long-term storage. Data would then only need to be copied once and researchers would only have to pay for temporary storage while the analysis was in progress. Access would only be provided to authorized researchers.

"Currently a great deal of valuable time and money is spent by researchers transferring data from a repository to their own preferred server, instead of easily and cheaply tapping into a global data commons whenever they need to," said Dr. Lincoln Stein, Director of the Informatics and Bio-computing Program at the Ontario Institute for Cancer Research, leader of the ICGC's Data Coordination Center in Toronto and a lead author on the paper. "We encourage a larger investment in the cloud in order to use public funds more effectively and to help accelerate the pace of genomics research."

"Having authorized access procedures in place ensures respect for the wishes of data donors, including that their data be used safely and securely," said Dr. Bartha Knoppers, Director of the Centre of Genomics and Policy, McGill University. "Applying the Framework for Responsible Sharing of Genomic and Health-Related Data is a first step in enacting the human right of citizens to benefit from scientific advances and of scientists to be recognized for their work."

"The complexity of cancer biology means that we need huge data sets - basically, the bigger the better," said Dr. Peter Campbell, Head of Cancer Genomics at the Wellcome Trust Sanger Institute. "We have now reached a stage where these data sets are too large to move around - cloud computing offers us the flexibility to hold the data in one virtual location and unleash the world's researchers on it all together."

"The amount of genomic data is growing at an amazing rate. Moving data and analysis tools to the cloud will democratize access to data and to the computational resources required to analyze that data," said Dr. Gad Getz, Director of the Cancer Genome Computational Analysis Group at the Broad Institute of MIT and Harvard. "The expanded access will accelerate tool development, grow the population of researchers analyzing these rich data sets and ultimately increase the pace of scientific discovery. These cloud-based analysis platforms will also enable the testing of new distributed computing paradigms which expand both the scale of the analyses and the sophistication of the computational algorithms. We are now building a pilot of such a cloud platform."

"The establishment of novel powerful cloud computing frameworks enabling us to store, share and analyze data across borders will open new perspectives in cancer research," said Dr. Jan Korbel, group leader at the European Molecular Biology Laboratory (EMBL). "These will take into consideration developments in science and policies for the distribution and sharing of data sets as sensitive as patient genetic data ensuring a safe environment to serve the interests of both sample donors and researchers."

Cloud computing is most widely associated with consumer products, such as storing music, photos or editing documents in real time. But in fact a great deal of research is already conducted in the cloud, safely and securely. Cloud computing is shared resource, giving researchers access to storage and computing power as needed, instead of making a long term investment in computer infrastructure. This also maximizes the use of the infrastructure as it can be used by many researchers instead of just one.

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...