Smart Watches Are Vulnerable to Hackers

They're the latest rage in jewelry and gadgetry, but like all computer devices, smart watches are vulnerable to hackers, say researchers at the University of Illinois at Urbana-Champaign. Using a homegrown app on a smart watch, the researchers were able to guess what a user was typing through data "leaks" produced by the motion sensors on smart watches.

The project, called Motion Leaks through Smartwatch Sensors, or MoLe, has privacy implications, as an app that is camouflaged as a pedometer, for example, could gather data from emails, search queries and other confidential documents.

The work, funded by the National Science Foundation, is being presented this week at the MobiCom 2015 conference in Paris.

"Sensor data from wearable devices will clearly be a double-edged sword," said Romit Roy Choudhury, associate professor of electrical and computer engineering at Illinois. "While the device's contact to the human body will offer invaluable insights into human health and context, it will also make way for deeper violation into human privacy. The core challenge is in characterizing what can or cannot be inferred from sensor data and the MoLe project is one example along this direction."

The app uses an accelerometer and gyroscope to track the micro-motion of keystrokes as a wearer types on a keyboard. After collecting the sensor data, researchers ran it through a "Keystroke Detection" module, which analyzed the timing of each keystroke and the net 2D displacement of the watch. For example, the left wrist moves farther to type a "T" than an "F."

While Illinois researchers developed MoLe, it is conceivable that hackers could build a similar app and deploy it to iTunes and other libraries.

Roy Choudhury's team said the rapid proliferation of wearable devices made them ask the question: Just how secure is the data? They approached this topic from the perspective of an attacker. Rather than directly developing security measures for smart watches, they aimed to discern ways that attackers can decipher users' information.

"There are a lot of good things that smart watches can bring to our lives, but there could be bad things," said He Wang, 27, a PhD student in electrical and computer engineering at the University of Illinois. "So if you think from that perspective - if there are any 'bad' things we could do - we can help other people protect their privacy, or at least make them realize there's a potential problem."

A possible solution to these motion leaks would be to lower the sample rate of the sensors in the watch, Wang says. For instance, the sample rate is normally around 200 Hertz, meaning the system logs 200 accelerometer and gyroscope readings per second. However, if that number is lowered to below 15, the users' wrist movements become extremely difficult to track.

While their work has yielded revolutionary results so far, there is still a long way to go in polishing the data-collection process. The team's current system can't detect special characters such as numbers, punctuation and symbols that might appear in passwords. The "space" bar or key also poses an obstacle. In addition, researchers can only collect data from the hand wearing the watch and from people who have standard typing patterns.

"There's a subset of people who don't type like that," said Ted Tsung-Te Lai, 30, a post-doctorate researcher at UIUC, who noted that the team will develop more models to account for typing differences in the future.

While a Samsung watch was used in this project, the researchers believe that any wearable device that uses motion sensors - from the Apple Watch to Fitbit - could be vulnerable as well.

Lai said, "We would just like to advise people who use the watch to enjoy it, but know that 'Hey, there's a threat'."

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...