Smartphones and Intelligent Socks to Help Prevent Diabetic Amputations

Diabetic neuropathy is a type of nerve damage associated with the development of foot ulcers in patients with diabetes. Resulting from anatomical deformation, excessive pressure and poor blood supply, it affects over 130 million individuals worldwide. It is also the leading cause of amputation, costing the United States economy alone more than $10 billion annually.

Diabetic patients are encouraged to get regular checkups to monitor for the increased pressure and ulceration that can eventually require amputation. However, ulcers are only diagnosed after they occur, meaning that patients require healing time, which dramatically increases healthcare costs.

Members of the BioDesign: Medical Innovation program, created by The Hebrew University of Jerusalem and its affiliated Hadassah Medical Center, set out to solve this problem.

"This is a significant medical problem that affects the lives of millions. We thought there must be a way to avoid these wounds altogether," said Danny Bavli, the group's lead engineer.

To address this challenge, Bavli partnered with Sagi Frishman and Dr. David Morgenstern, a leading orthopedic surgeon at Hadassah Medical Center. Together with other members of the Hebrew University BioDesign group, they developed SenseGO, a machine-washable sock containing dozens of micro-fabricated pressure sensors.

With SenseGO, changes in pressure due to incorrect posture, anatomical deformation or ill-fitting shoes are registered as electrical signals that are relayed to a smartphone app, which in turn informs the patient of developing risk.

Prof. Yaakov Nahmias, BioDesign program director, said: "This is a classic mobile health approach. By giving patients and their families the tools they need to prevent the development of ulcers, we can dramatically reduce health care costs related to diabetes."

Other members of the BioDesign SenseGO team included Inbal Boxerman and Yael Hadar, MBA students at The Hebrew University of Jerusalem.

BioDesign: Medical Innovation is a multi-disciplinary, team-based approach to medical innovation, created by the Hebrew University of Jerusalem and its affiliated Hadassah Medical Center. Sponsored by Boston Scientific and the Terumo Medical Corporation, the program takes outstanding medical fellows, bioengineering and business graduate students, and tutors them in the science and practice of bringing a medical innovation to the market. The program is directed by Prof. Yaakov Nahmias, director of the Alexander Grass Center for Bioengineering at the Hebrew University of Jerusalem, and Prof. Chaim Lotan, director of the Heart Institute at Hadassah Medical Center.

The innovations produced by the Biodesign program participants are commercialized by Yissum, the technology transfer company of the Hebrew University of Jerusalem, and Hadasit, the technology transfer company of the Hadassah Medical Center.

Most Popular Now

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...

A New AI Tool for Cancer

Scientists at Harvard Medical School have designed a versatile, ChatGPT-like AI model capable of performing an array of diagnostic tasks across multiple forms of cancers. The new AI system, described Sept...

Vision-Based ChatGPT Shows Deficits Inte…

Researchers evaluating the performance of ChatGPT-4 Vision found that the model performed well on text-based radiology exam questions but struggled to answer image-related questions accurately. The study's results were published...

Bayer Launches New Healthy-Aging Ecosyst…

Combining a scientifically formulated dietary supplement, a leading-edge wellness companion app, and a saliva-based a biological age test by Chronomics, Bayer is taking a big step in the emerging healthy-aging...

New AI-Driven Tool could Revolutionize B…

Researchers at the Icahn School of Medicine at Mount Sinai have developed a noninvasive technique that could dramatically improve the way doctors monitor intracranial hypertension, a condition where increased pressure...