Gene Editing Takes on New Roles

What combinations of mutations help cancer cells survive? Which cells in the brain are involved in the onset of Alzheimer's? How do immune cells conduct their convoluted decision-making processes? Researchers at the Weizmann Institute of Science have now combined two powerful research tools - CRISPR gene editing and single cell genomic profiling - in a method that may finally help us get answers to these questions and many more.

The new technology enables researchers to manipulate gene functions within single cells, and understand the results of each change in extremely high resolution. A single experiment with this method, say the scientists, may be equal to thousands of experiments conducted using previous approaches, and it may advance the field of genetic engineering for medical applications.

The gene-editing technique CRISPR is already transforming biology research around the world, and its clinical use in humans is just around the corner. CRISPR was first discovered in bacteria as a primitive acquired immune system, which cuts and pastes viral DNA into their own genomes to fight viruses. In recent years, this bacterial system has been adopted by researchers to snip out or insert nearly any gene in any organism or cell, quickly and efficiently. "But CRISPR, on its own, is a blunt research tool, since we often have trouble observing or understanding the outcome of this genomic editing," says Prof. Ido Amit of the Weizmann Institute of Science's Immunology Department, who led the study. "Most studies so far have looked for black-or-white types of effects," adds Dr. Diego Jaitin, of Amit's lab group, "but the majority of processes in the body are complex and even chaotic."

Amit and his lab team have been developing the second arm of the new method - single-cell RNA sequencing, a rapidly advancing field that is making an impact on many areas of research and biotechnology. By sequencing the messenger RNA molecules in each individual cell - messages that indicate cellular activity - the researchers are able to uncover the molecular makeup of each cell, and to discern a nuanced range of cell identities and functions in a given cell population. "It is a new molecular microscope," says Amit. Thousands of cells from a particular tissue in the body can be sequenced at once in his lab, uncovering variation in cell identities and functions. This method has been used to understand everything from the effects of fetal brain development, to how common immune cells function differently in the various tissues of our body, including their involvement in cancer or neurodegeneration. But single-cell sequencing has mostly been an observatory tool, providing a snapshot of a given tissue sample.

Combing CRISPR with the fine resolution of single-cell RNA sequencing can enable researchers to actively tinker with the genes in cells, and then to understand their functions within numerous cell types in a variety of situations. The challenge for Amit and his group, including lead authors Drs. Jaitin, Ido Yofe and Assaf Weiner, and research student David Lara-Astiaso, was to adapt the CRISPR gene editing technology so it could be used in combination with single-cell sequencing. The group envisioned targeting many genes at once, including combined targets in the same cell, and then identifying the resulting changes to the cell and its function. This undertaking required, on the one hand, the development of new molecular techniques for simultaneously identifying targeted cells and the genome edits introduced to them and, on the other hand, the development of new computational methods for analyzing a community of cells with different genotypes and phenotypes.

The researchers then faced a new type of data - with quite a few missing values. "By linking cells with similar behaviors, something like the algorithms Netflix uses to group people who like similar movies, we were able to identify previously unrated function for many genes," says Weiner who developed the algorithms to analyze the data.

The combined method enabled the research team to "probe the wiring" of particular mouse immune cells as they combat pathogens. This "proof of principle" experiment identified genes that are important for the function of various immune cells, and illustrated in high resolution how they direct a complex and concentrated response against invading pathogens.

Combining the two methods, say the scientists, can provide new insight that neither method, alone, would be able to yield. The results, says Yofe, can be observed in a resolution never before achieved for this type of study, and these can be obtained more easily and in a fraction of the time. The versatility of the method, combined with the precision the team developed by refining their design through experimentation, suggest that it can be used in the future to investigate many open questions, and produce new results that no one can yet predict.

The results of the research in Amit's lab were published today in Cell, along with descriptions of two similar technologies developed at the Broad Institute in Boston and the University the California, San Francisco.

"The advent of CRISPR presented a true leap in the ability to understand and start editing immune circuits," says Amit. "We are hoping that our approach will be the next leap forward, providing, among other things, the ability to engineer immune cells for immunotherapy."

For further information, please visit:
http://www.weizmann.ac.il/immunology/AmitLab/

Prof. Ido Amit's research is supported by the Benoziyo Endowment Fund for the Advancement of Science; the David and Fela Shapell Family Foundation INCPM Fund for Preclinical Studies; the Leona M. and Harry B. Helmsley Charitable Trust; the Rosenwasser Fund for Biomedical Research; the Alan and Laraine Fischer Foundation; Isa Lior, Israel; Drs. Herbert and Esther Hecht, Beverly Hills, CA; the Comisaroff Family Trust; Rising Tide; the David M. Polen Charitable Trust; the BLG Trust; and Mr. and Mrs. Harold Hirshberg, Park Ridge, NJ. Prof. Amit is the recipient of the Helen and Martin Kimmel Award for Innovative Investigation.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...