Novel Software can Recognize Eye Contact in Everyday Situations

"Until now, if you were to hang an advertising poster in the pedestrian zone, and wanted to know how many people actually looked at it, you would not have had a chance", explains Andreas Bulling, who leads the independent research group "Perceptual User Interfaces" at the Excellence Cluster at Saarland University and the Max Planck Institute for Informatics. Previously, one would try to capture this important information by measuring gaze direction. This required special eye tracking equipment which needed minutes-long calibration; what was more, everyone had to wear such a tracker. Real-world studies, such as in a pedestrian zone, or even just with multiple people, were in the best case very complicated and in the worst case, impossible.

Even when the camera was placed at the target object, for example the poster, and machine learning was used i.e. the computer was trained using a sufficient quantity of sample data only glances at the camera itself could be recognized. Too often, the difference between the training data and the data in the target environment was too great. A universal eye contact detector, usable for both small and large target objects, in stationary and mobile situations, for one user or a whole group, or under changing lighting conditions, was hitherto nearly impossible.

Together with his PhD student Xucong Zhang, and his former PostDoc Yusuke Sugano, now a Professor at Osaka University, Bulling has developed a method [1] that is based on a new generation of algorithms for estimating gaze direction. These use a special type of neural network, known as "Deep Learning", that is currently creating a sensation in many areas of industry and business. Bulling and his colleagues have already been working on this approach for two years [2] and have advanced it step by step [3]. In the method they are now presenting, first a so-called clustering of the estimated gaze directions is carried out. With the same strategy, one can, for example, also distinguish apples and pears according to various characteristics, without having to explicitly specify how the two differ. In a second step, the most likely clusters are identified, and the gaze direction estimates they contain are used for the training of a target-object-specific eye contact detector. A decisive advantage of this procedure is that it can be carried out with no involvement from the user, and the method can also improve further, the longer the camera remains next to the target object and records data. "In this way, our method turns normal cameras into eye contact detectors, without the size or position of the target object having to be known or specified in advance," explains Bulling.

The researchers have tested their method in two scenarios: in a workspace, the camera was mounted on the target object, and in an everyday situation, a user wore an on-body camera, so that it took on a first-person perspective. The result: Since the method works out the necessary knowledge for itself, it is robust, even when the number of people involved, the lighting conditions, the camera position, and the types and sizes of target objects vary.

However, Bulling notes that "we can in principle identify eye contact clusters on multiple target objects with only one camera, but the assignment of these clusters to the various objects is not yet possible. Our method currently assumes that the nearest cluster belongs to the target object, and ignores the other clusters. This limitation is what we will tackle next." He is nonetheless convinced that "the method we present is a great step forward. It paves the way not only for new user interfaces that automatically recognize eye contact and react to it, but also for measurements of eye contact in everyday situations, such as outdoor advertising, that were previously impossible."

1. Xucong Zhang, Yusuke Sugano and Andreas Bulling. Everyday Eye Contact Detection Using Unsupervised Gaze Target Discovery. Proc. ACM UIST 2017.
2. Xucong Zhang, Yusuke Sugano, Mario Fritz and Andreas Bulling. Appearance-Based Gaze Estimation in the Wild. Proc. IEEE CVPR 2015, 4511-4520.
3. Xucong Zhang, Yusuke Sugano, Mario Fritz and Andreas Bulling. It's Written All Over Your Face: Full-Face Appearance-Based Gaze Estimation. Proc. IEEE CVPRW 2017.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...