Novel Software can Recognize Eye Contact in Everyday Situations

"Until now, if you were to hang an advertising poster in the pedestrian zone, and wanted to know how many people actually looked at it, you would not have had a chance", explains Andreas Bulling, who leads the independent research group "Perceptual User Interfaces" at the Excellence Cluster at Saarland University and the Max Planck Institute for Informatics. Previously, one would try to capture this important information by measuring gaze direction. This required special eye tracking equipment which needed minutes-long calibration; what was more, everyone had to wear such a tracker. Real-world studies, such as in a pedestrian zone, or even just with multiple people, were in the best case very complicated and in the worst case, impossible.

Even when the camera was placed at the target object, for example the poster, and machine learning was used i.e. the computer was trained using a sufficient quantity of sample data only glances at the camera itself could be recognized. Too often, the difference between the training data and the data in the target environment was too great. A universal eye contact detector, usable for both small and large target objects, in stationary and mobile situations, for one user or a whole group, or under changing lighting conditions, was hitherto nearly impossible.

Together with his PhD student Xucong Zhang, and his former PostDoc Yusuke Sugano, now a Professor at Osaka University, Bulling has developed a method [1] that is based on a new generation of algorithms for estimating gaze direction. These use a special type of neural network, known as "Deep Learning", that is currently creating a sensation in many areas of industry and business. Bulling and his colleagues have already been working on this approach for two years [2] and have advanced it step by step [3]. In the method they are now presenting, first a so-called clustering of the estimated gaze directions is carried out. With the same strategy, one can, for example, also distinguish apples and pears according to various characteristics, without having to explicitly specify how the two differ. In a second step, the most likely clusters are identified, and the gaze direction estimates they contain are used for the training of a target-object-specific eye contact detector. A decisive advantage of this procedure is that it can be carried out with no involvement from the user, and the method can also improve further, the longer the camera remains next to the target object and records data. "In this way, our method turns normal cameras into eye contact detectors, without the size or position of the target object having to be known or specified in advance," explains Bulling.

The researchers have tested their method in two scenarios: in a workspace, the camera was mounted on the target object, and in an everyday situation, a user wore an on-body camera, so that it took on a first-person perspective. The result: Since the method works out the necessary knowledge for itself, it is robust, even when the number of people involved, the lighting conditions, the camera position, and the types and sizes of target objects vary.

However, Bulling notes that "we can in principle identify eye contact clusters on multiple target objects with only one camera, but the assignment of these clusters to the various objects is not yet possible. Our method currently assumes that the nearest cluster belongs to the target object, and ignores the other clusters. This limitation is what we will tackle next." He is nonetheless convinced that "the method we present is a great step forward. It paves the way not only for new user interfaces that automatically recognize eye contact and react to it, but also for measurements of eye contact in everyday situations, such as outdoor advertising, that were previously impossible."

1. Xucong Zhang, Yusuke Sugano and Andreas Bulling. Everyday Eye Contact Detection Using Unsupervised Gaze Target Discovery. Proc. ACM UIST 2017.
2. Xucong Zhang, Yusuke Sugano, Mario Fritz and Andreas Bulling. Appearance-Based Gaze Estimation in the Wild. Proc. IEEE CVPR 2015, 4511-4520.
3. Xucong Zhang, Yusuke Sugano, Mario Fritz and Andreas Bulling. It's Written All Over Your Face: Full-Face Appearance-Based Gaze Estimation. Proc. IEEE CVPRW 2017.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...