Novel Software can Recognize Eye Contact in Everyday Situations

"Until now, if you were to hang an advertising poster in the pedestrian zone, and wanted to know how many people actually looked at it, you would not have had a chance", explains Andreas Bulling, who leads the independent research group "Perceptual User Interfaces" at the Excellence Cluster at Saarland University and the Max Planck Institute for Informatics. Previously, one would try to capture this important information by measuring gaze direction. This required special eye tracking equipment which needed minutes-long calibration; what was more, everyone had to wear such a tracker. Real-world studies, such as in a pedestrian zone, or even just with multiple people, were in the best case very complicated and in the worst case, impossible.

Even when the camera was placed at the target object, for example the poster, and machine learning was used i.e. the computer was trained using a sufficient quantity of sample data only glances at the camera itself could be recognized. Too often, the difference between the training data and the data in the target environment was too great. A universal eye contact detector, usable for both small and large target objects, in stationary and mobile situations, for one user or a whole group, or under changing lighting conditions, was hitherto nearly impossible.

Together with his PhD student Xucong Zhang, and his former PostDoc Yusuke Sugano, now a Professor at Osaka University, Bulling has developed a method [1] that is based on a new generation of algorithms for estimating gaze direction. These use a special type of neural network, known as "Deep Learning", that is currently creating a sensation in many areas of industry and business. Bulling and his colleagues have already been working on this approach for two years [2] and have advanced it step by step [3]. In the method they are now presenting, first a so-called clustering of the estimated gaze directions is carried out. With the same strategy, one can, for example, also distinguish apples and pears according to various characteristics, without having to explicitly specify how the two differ. In a second step, the most likely clusters are identified, and the gaze direction estimates they contain are used for the training of a target-object-specific eye contact detector. A decisive advantage of this procedure is that it can be carried out with no involvement from the user, and the method can also improve further, the longer the camera remains next to the target object and records data. "In this way, our method turns normal cameras into eye contact detectors, without the size or position of the target object having to be known or specified in advance," explains Bulling.

The researchers have tested their method in two scenarios: in a workspace, the camera was mounted on the target object, and in an everyday situation, a user wore an on-body camera, so that it took on a first-person perspective. The result: Since the method works out the necessary knowledge for itself, it is robust, even when the number of people involved, the lighting conditions, the camera position, and the types and sizes of target objects vary.

However, Bulling notes that "we can in principle identify eye contact clusters on multiple target objects with only one camera, but the assignment of these clusters to the various objects is not yet possible. Our method currently assumes that the nearest cluster belongs to the target object, and ignores the other clusters. This limitation is what we will tackle next." He is nonetheless convinced that "the method we present is a great step forward. It paves the way not only for new user interfaces that automatically recognize eye contact and react to it, but also for measurements of eye contact in everyday situations, such as outdoor advertising, that were previously impossible."

1. Xucong Zhang, Yusuke Sugano and Andreas Bulling. Everyday Eye Contact Detection Using Unsupervised Gaze Target Discovery. Proc. ACM UIST 2017.
2. Xucong Zhang, Yusuke Sugano, Mario Fritz and Andreas Bulling. Appearance-Based Gaze Estimation in the Wild. Proc. IEEE CVPR 2015, 4511-4520.
3. Xucong Zhang, Yusuke Sugano, Mario Fritz and Andreas Bulling. It's Written All Over Your Face: Full-Face Appearance-Based Gaze Estimation. Proc. IEEE CVPRW 2017.

Most Popular Now

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...