Wearable Technology to Personalize Lu-177-DOTATATE Therapy for NETs

Researchers at the University of Washington in Seattle, Washington, are developing a user-friendly (worn at home) vest with technology that collects data to tailor personalized therapy for patients with metastatic, somatostatin-receptor-2 positive neuroendocrine tumors (NETs). The study was presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

Targeted therapy using lutetium-177 (177Lu)-DOTATATE greatly increases progression-free survival for NETs patients. While approved by the United States Food and Drug Administration (FDA), the FDA package instructions call for patients to receive a standardized protocol, regardless of size or weight. Traditionally, targeted radionuclide therapies are personalized based on dose to the main organs at risk (OAR, e.g., kidneys, liver, spleen).

"Organ specific dosimetry for the 177Lu-DOTATATE (Lutathera) is the norm at many medical centers outside of the United States," explains Robert Miyaoka at the University of Washington. "Longitudinal imaging studies are conducted after each therapy treatment to determine the cumulative dose to the OAR for each patient. The standardized 177Lu-DOTATATE treatment protocol in the United States consists of four 200 mCi doses spaced two months apart. Although this is safe for a vast majority of patients, it is less than optimal for most. Studies out of Europe are revealing that tailoring the number of treatment doses based upon the dose-limiting toxicity to the patient's OAR can more than double the progression-free and overall survival for NET patients undergoing 177Lu-DOTATATE therapy."

Another factor the researchers sought to address is the fact that traditional imaging-based methods for organ dosimetry estimation for 177Lu require three-to-four longitudinal imaging sessions spread over seven days. This is expensive, uses a lot of clinic resources and is burdensome to the patient.

"We propose to create a lightweight, low-cost, wearable, patient-specific technology that will allow organ-specific measurement recordings to be made within the comfort of the patient's home," Miyaoka says. "The garment [called a multi-detector personalized home dosimetry (MD PHD) vest] will house 15-20 small radiation detectors, strategically placed within the vest based upon the patient's own anatomy. In addition to the radiation detectors the vest will be coupled to a compact electronics pack that will acquire the data and send it via WiFi or cellular services to a secure website where medical personnel/software can check the data for quality control in near real-time."

He further explains, "The patient will be asked to wear the vest for a two-minute data acquisition once a day for seven (and up to 21) days. Based upon these at-home measurements and a single SPECT/CT image taken 24 hours after the therapy administration, organ specific dosimetry will be determined for all of the patient's OAR." With the information collected via the vest, physicians would be able to tailor the number of treatments based upon personalized organ dosimetry information.

Miyaoka reports, "Preliminary vest results from simulations are showing that at-home vest measurements made over 7-21 days can provide organ-specific washout rates with precision as good or better than the current accepted gold standard of three-four quantitative SPECT/CT images acquired over seven days. The initial goal of this technology is to enable personalized 177Lu-DOTATATE therapies in the United States and to lower the cost for treatment personalization throughout the world."

Abstract 313: "Wearable Technology to Enable Personalization of Lu177-DOTATATE Therapy for Neuroendocrine Tumor Patients," Robert Miyaoka, Larry Pierce, Robert Harrison and Hubert Vesselle, University of Washington, Seattle, WA. SNMMI's 66TH Annual Meeting, June 22-25, 2019, Anaheim, CA.

All 2019 SNMMI Annual Meeting abstracts can be found online at http://jnm.snmjournals.org/content/60/supplement_1.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI's more than 16,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice.

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...