Reinforcement Learning for Improved Performance of AI Explored

Artificial intelligence (AI) is already being used to diagnose skin cancer, but it cannot (yet) keep pace with the complex decision-making of doctors in practice. An international research team led by Harald Kittler of MedUni Vienna has now explored a learning method in which greater accuracy in AI results can be achieved by incorporating human decision-making criteria. In this way, the rate of correct skin cancer diagnoses made by dermatologists was improved by twelve percent. The study was published in the top journal Nature Medicine.

The researchers based their study on the reinforcement learning (RL) model and integrated (human) criteria in the form of "reward tables" into the AI system. Reward tables are tools that incorporate the positive and negative consequences of clinical assessments into the decision-making process from both the physician's and the patient's perspective. On this basis, AI diagnosis results were not only rated as right or wrong, but were "rewarded" or "penalized" with a certain number of plus or minus points depending on the impact of the diagnosis or the resulting decisions.

"In this way, the AI learned to take into account not only image-based features, but also consequences of misdiagnosis in the assessment of benign and malignant skin manifestations," clarifies study leader Harald Kittler from the Department of Dermatology at MedUni Vienna. As a result, as the study shows, the accuracy of the diagnosis of skin cancer could be significantly improved: The sensitivity for melanoma, for example, was increased from 61.4 to 79.5 percent and for basal cell carcinoma from 79.4 to 87.1 percent. Overall, the use of RL increased the rate of correct diagnoses made by dermatologists by 12 percent, while the rate of optimal decisions for management and therapy of the disease increased from 57.4 to 65.3 percent.

Such improved performance of AI-based skin cancer diagnosis is also because RL reduces the AI's overconfidence in its own predictions and makes more nuanced and human-compatible suggestions. "This, in turn, helps physicians make more accurate decisions tailored to individual patients in complex medical scenarios," Harald Kittler emphasized ahead of further research on the topic. Although the current work focused mainly on skin cancer diagnosis, the basic ideas could also be used in other areas of medical decision-making.

Barata C, Rotemberg V, Codella NCF, Tschandl P, Rinner C, Akay BN, Apalla Z, Argenziano G, Halpern A, Lallas A, Longo C, Malvehy J, Puig S, Rosendahl C, Soyer HP, Zalaudek I, Kittler H.
A reinforcement learning model for AI-based decision support in skin cancer.
Nat Med. 2023 Jul 27. doi: 10.1038/s41591-023-02475-5

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...