New AI Tool Accelerates Disease Treatments

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by identifying not just which patient populations may benefit but also how the drugs work inside cells.

The researchers have demonstrated the tool's potential by identifying a promising candidate to prevent heart failure, a leading cause of death in the United States and around the world.

The new AI tool called LogiRx, can predict how drugs will affect biological processes in the body, helping scientists understand the effects the drugs will have other than their original purpose. For example, the researchers found that the antidepressant escitalopram, sold as Lexapro, may prevent harmful changes in the heart that lead to heart failure, a condition that causes almost half of all cardiovascular deaths in the United States.

"AI needs to move from detecting patterns to generating understanding," said UVA's Jeffrey J. Saucerman. PhD. "Our LogiRx tool helps us identify not just which drugs can be repurposed for heart disease but how they work in the heart."

Heart failure kills more than 400,000 Americans every year. One of its hallmarks is the overgrowth of cells that thicken the heart muscle and prevent the organ from pumping blood as it should. This is known as cardiac hypertrophy.

Saucerman and his team, led by PhD student Taylor Eggertsen, wanted to see if LogiRx could identify drugs with the potential to prevent cardiac hypertrophy and, ultimately, head off heart failure. They used the tool to evaluate 62 drugs that had been previously identified as promising candidates for the task. LogiRx was able to predict "off-target" effects for seven of these drugs that could help prevent harmful cellular hypertrophy, which were confirmed in cells for two of the drugs.

The scientists then evaluated LogiRx’s predictions by doing lab tests and by looking at outcomes in patients taking the drugs. The latter revealed that patients taking escitalopram were significantly less likely to develop cardiac hypertrophy.

"LogiRx identifies unexpected new uses for old drugs that are already shown to be safe in humans," said Eggertsen, in UVA's Department of Biomedical Engineering, a joint program of the School of Medicine and School of Engineering. "This tool can help researchers explore new patient populations that could benefit from a drug or to avoid unwanted side effects."

Additional lab research and clinical trials will be needed before doctors might start prescribing escitalopram for heart health. But Saucerman is excited about the potential of LogiRx for advancing and accelerating new treatments not just for cardiac hypertrophy but for a host of other serious medical conditions.

"AI is accelerating many aspects of drug development, but it has made less progress in providing the required understanding of how these drug work in the body," Saucerman said. "LogiRx is a step towards combining AI with existing knowledge of how cells work to find new uses for old drugs."

Eggertsen TG, Travers JG, Hardy EJ, Wolf MJ, McKinsey TA, Saucerman JJ.
Logic-based machine learning predicts how escitalopram attenuates cardiomyocyte hypertrophy.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2420499122. doi: 10.1073/pnas.2420499122

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

North Cumbria Integrated Care Signs 10-Y…

North Cumbria Integrated Care NHS Foundation Trust (NCIC) has signed a long-term agreement for use of the Alcidion Miya Precision platform, to provide an electronic patient record (EPR) for the...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...