New AI Tool Accelerates Disease Treatments

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by identifying not just which patient populations may benefit but also how the drugs work inside cells.

The researchers have demonstrated the tool's potential by identifying a promising candidate to prevent heart failure, a leading cause of death in the United States and around the world.

The new AI tool called LogiRx, can predict how drugs will affect biological processes in the body, helping scientists understand the effects the drugs will have other than their original purpose. For example, the researchers found that the antidepressant escitalopram, sold as Lexapro, may prevent harmful changes in the heart that lead to heart failure, a condition that causes almost half of all cardiovascular deaths in the United States.

"AI needs to move from detecting patterns to generating understanding," said UVA's Jeffrey J. Saucerman. PhD. "Our LogiRx tool helps us identify not just which drugs can be repurposed for heart disease but how they work in the heart."

Heart failure kills more than 400,000 Americans every year. One of its hallmarks is the overgrowth of cells that thicken the heart muscle and prevent the organ from pumping blood as it should. This is known as cardiac hypertrophy.

Saucerman and his team, led by PhD student Taylor Eggertsen, wanted to see if LogiRx could identify drugs with the potential to prevent cardiac hypertrophy and, ultimately, head off heart failure. They used the tool to evaluate 62 drugs that had been previously identified as promising candidates for the task. LogiRx was able to predict "off-target" effects for seven of these drugs that could help prevent harmful cellular hypertrophy, which were confirmed in cells for two of the drugs.

The scientists then evaluated LogiRx’s predictions by doing lab tests and by looking at outcomes in patients taking the drugs. The latter revealed that patients taking escitalopram were significantly less likely to develop cardiac hypertrophy.

"LogiRx identifies unexpected new uses for old drugs that are already shown to be safe in humans," said Eggertsen, in UVA's Department of Biomedical Engineering, a joint program of the School of Medicine and School of Engineering. "This tool can help researchers explore new patient populations that could benefit from a drug or to avoid unwanted side effects."

Additional lab research and clinical trials will be needed before doctors might start prescribing escitalopram for heart health. But Saucerman is excited about the potential of LogiRx for advancing and accelerating new treatments not just for cardiac hypertrophy but for a host of other serious medical conditions.

"AI is accelerating many aspects of drug development, but it has made less progress in providing the required understanding of how these drug work in the body," Saucerman said. "LogiRx is a step towards combining AI with existing knowledge of how cells work to find new uses for old drugs."

Eggertsen TG, Travers JG, Hardy EJ, Wolf MJ, McKinsey TA, Saucerman JJ.
Logic-based machine learning predicts how escitalopram attenuates cardiomyocyte hypertrophy.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2420499122. doi: 10.1073/pnas.2420499122

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...