AI-Based Wastewater Sampling Predicts COVID Hospital Admissions

It is possible to accurately predict hospital admission numbers due to COVID-19 up to four weeks in advance using an Artificial Intelligence (AI) based system together with COVID wastewater sampling, new research shows.

The study, published in the journal Nature Communications, used wastewater data from 159 counties in the US, covering nearly 100 million Americans, along with US hospital admission records, to develop the prediction model.

The research was led by Professor Qilin Wang and Dr Xuan Li from the University of Technology Sydney together with researchers from UNSW Sydney, Delft University of Technology and Morgan State University.

Dr Li was recently awarded a two-year grant from the Australian Academy of Science WH Gladstones Population and Environment Fund to develop an Australian-based wastewater prediction model.

"COVID-19 still poses a heavy burden on healthcare systems around the world. The number of Australians in hospital with Covid-19 peaked at around 5500 and continues to fluctuate. Rapid increases in patient numbers can stress frontline healthcare capacity and increase fatality rates," Dr Li said.

"Current prediction methods are based on COVID-19 laboratory testing, or self-testing and reporting, however this does not pick up asymptomatic cases, and many countries are moving away from rigorous testing requirements," she said.

Professor Wang said the research shows wastewater surveillance combined with AI-based modelling can be a cost-effective early warning system, allowing public health officials to better prepare for and manage pandemic waves, and efficiently allocate limited healthcare resources.

"Wastewater monitoring is already conducted in many countries, but it is limited to showing whether COVID-19 is present in a region, as well as a rough estimation of whether the burden is increasing or decreasing.

"We used artificial intelligence to pick up patterns and changes in the data and learn from this to increase the accuracy of predictions.

"Variables that can influence hospital admissions include changing behaviour due to public policies, vaccination rates, holidays and weather. The established model can help accurately predict the hospitalisation needs due to COVID-19 in the region," he said.

Dr Li hopes to extend her research to include other infectious diseases that can be detected through wastewater-based epidemiology, including food-borne pathogens, such as salmonella and E-coli, and viruses such as flu, norovirus and hepatitis A.

"My PhD focused on sewer design to reduce concrete corrosion, however I graduated right around the time of COVID-19 and saw an opportunity to monitor and study the pandemic," said Dr Li.

"I'm grateful for the opportunity to receive the WH Gladstones award, particularly as an early career researcher, to explore the potential to create early-warning systems for COVID-19 and other diseases. I hope this work can benefit the community and inspire other women in science."

Li X, Liu H, Gao L, Sherchan SP, Zhou T, Khan SJ, van Loosdrecht MCM, Wang Q.
Wastewater-based epidemiology predicts COVID-19-induced weekly new hospital admissions in over 150 USA counties.
Nat Commun. 2023 Jul 28;14(1):4548. doi: 10.1038/s41467-023-40305-x

Most Popular Now

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...