Deep Learning Model Accurately Diagnoses COPD

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic Imaging, a journal of the Radiological Society of North America (RSNA).

COPD is a group of progressive lung diseases that impair a person's ability to breathe. Symptoms typically involve shortness of breath and fatigue. There currently is no cure for COPD, and it is the third leading cause of death worldwide, according to the World Health Organization.

A spirometry test, also known as a pulmonary function test, is traditionally used to diagnose COPD. It measures lung function through the quantity of air that can be inhaled and exhaled as well as the speed of exhalation.

CT images of the lungs can aid in COPD diagnosis. The procedure typically requires two image acquisitions, one at full inhalation, called inspiratory, and one at normal exhalation, called expiratory.

"Although studies have recently shown that lung structure, quantitatively measured using lung CT, can supplement COPD severity staging, diagnosis and prognosis, many of these studies require the acquisition of two CT images," said study author Kyle A. Hasenstab, Ph.D., assistant professor of Statistics and Data Science at San Diego State University, California. "However, this type of protocol is not clinically standard across institutions."

Some hospitals are unable to implement expiratory CT protocols due to the added training requirements.

"Implementation of expiratory CT protocols may not be feasible at many institutions due to the need for technologist training to acquire the images and radiologist training to interpret the images," Dr. Hasenstab said.

Additionally, some elderly patients with impaired lung function struggle with holding their breath, as is required during exhalation image acquisition. This may impact the quality of CT images and the accuracy of diagnosis.

Dr. Hasenstab and colleagues hypothesized that a single inhalation CT acquisition combined with a convolutional neural network (CNN), and clinical data would be sufficient for COPD diagnosis and staging. A CNN is a type of artificial neural network that uses deep learning to analyze and classify images.

In this retrospective study, the inhalation and exhalation lung CT images and spirometry data were acquired from 8,893 patients from November 2007 to April 2011. The average age of the patients included in the study was 59 years and all had a history of smoking.

The CNN was trained to predict spirometry measurements using clinical data and either a single-phase or multi-phase lung CT.

The spirometry predictions were then used to predict the Global Initiative for Obstruct Lung Disease (GOLD) stage. The GOLD system classifies the severity of a patient’s COPD into one of four stages, with one classified as mild COPD and four classified as very severe COPD.

The results of the study showed that a CNN model developed using only a single respiratory phase CT image accurately diagnosed COPD and was also accurate within one GOLD stage.

The model performed similarly to COPD diagnoses that used combined inhalation and exhalation CT measurements.

"Although many imaging protocols for COPD diagnosis and staging require two CT acquisitions, our study shows that COPD diagnosis and staging is feasible with a single CT acquisition and relevant clinical data," Dr. Hasenstab said.

When clinical data was added, the CNN model’s predictions were even more accurate.

CNN models that used only inhalation or exhalation data respectively performed the same. This suggests that certain markers used for COPD diagnosis may overlap across images.

"Reduction to a single inspiratory CT acquisition can increase accessibility to this diagnostic approach while reducing patient cost, discomfort and exposure to ionizing radiation," Dr. Hasenstab said.

Lee AN, Hsiao A, Hasenstab KA.
Evaluating the Cumulative Benefit of Inspiratory CT, Expiratory CT, and Clinical Data for COPD Diagnosis and Staging through Deep Learning.
Radiol Cardiothorac Imaging. 2024 Dec;6(6):e240005. doi: 10.1148/ryct.240005

Most Popular Now

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...