Emotional Cognition Analysis Enables Near-Perfect Parkinson's Detection

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain responses to emotional situations like watching video clips or images. The findings offer an objective way to diagnose the debilitating movement disorder, instead of relying on clinical expertise and patient self-assessments, potentially enhancing treatment options and overall well-being for those affected by Parkinson's disease. The study was published Oct. 17 in Intelligent Computing, a Science Partner Journal.

Their emotional brain analysis focuses on the difference in implicit emotional reactions between Parkinson's patients, who are generally believed to suffer from impairments in recognizing emotions, and healthy individuals. The team demonstrated they can identify patients and healthy individuals with an F1 score of 0.97 or higher, based solely on brain scan readings of emotional responses. This diagnostic performance edges very close to 100% accuracy from brainwave data alone. The F1 score is a metric that combines precision and recall, where 1 is the best possible value.

The results show that Parkinson's patients displayed specific emotional perception patterns, comprehending emotional arousal better than emotional valence, which means they are more attuned to the intensity of emotions rather than the pleasantness or unpleasantness of those emotions. The patients were also found to struggle most with recognizing fear, disgust and surprise, or to confuse emotions of opposite valences, such as mistaking sadness for happiness.

The researchers recorded electroencephalography - or EEG - data, measuring electrical brain activity in 20 Parkinson's patients and 20 healthy controls. Participants watched video clips and images designed to trigger emotional responses. After the recording of EEG data, multiple EEG descriptors were processed to extract key features and these were transformed into visual representations, which were then analyzed using machine learning frameworks such as convolutional neural networks, for automatic detection of distinct patterns in how the patients processed emotions compared to the healthy group. This processing enabled the highly accurate differentiation between patients and healthy controls.

Key EEG descriptors used include spectral power vectors and common spatial patterns. Spectral power vectors capture the power distribution across various frequency bands, which are known to correlate with emotional states. Common spatial patterns enhance interclass discriminability by maximizing variance for one class while minimizing it for another, allowing for better classification of EEG signals.

As the researchers continue refining EEG-based techniques, emotional brain monitoring has the potential to become a widespread clinical tool for Parkinson's diagnosis. The study demonstrates the promise of combining neurotechnology, AI and affective computing to provide objective neurological health assessments.

Ravikiran Parameshwara, Soujanya Narayana, Murugappan Murugappan, Ibrahim Radwan, Roland Goecke, Ramanathan Subramanian.
Exploring Electroencephalography-Based Affective Analysis and Detection of Parkinson's Disease.
Intell Comput. 2024;3:0084. doi: 10.34133/icomputing.0084

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...