Emotional Cognition Analysis Enables Near-Perfect Parkinson's Detection

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain responses to emotional situations like watching video clips or images. The findings offer an objective way to diagnose the debilitating movement disorder, instead of relying on clinical expertise and patient self-assessments, potentially enhancing treatment options and overall well-being for those affected by Parkinson's disease. The study was published Oct. 17 in Intelligent Computing, a Science Partner Journal.

Their emotional brain analysis focuses on the difference in implicit emotional reactions between Parkinson's patients, who are generally believed to suffer from impairments in recognizing emotions, and healthy individuals. The team demonstrated they can identify patients and healthy individuals with an F1 score of 0.97 or higher, based solely on brain scan readings of emotional responses. This diagnostic performance edges very close to 100% accuracy from brainwave data alone. The F1 score is a metric that combines precision and recall, where 1 is the best possible value.

The results show that Parkinson's patients displayed specific emotional perception patterns, comprehending emotional arousal better than emotional valence, which means they are more attuned to the intensity of emotions rather than the pleasantness or unpleasantness of those emotions. The patients were also found to struggle most with recognizing fear, disgust and surprise, or to confuse emotions of opposite valences, such as mistaking sadness for happiness.

The researchers recorded electroencephalography - or EEG - data, measuring electrical brain activity in 20 Parkinson's patients and 20 healthy controls. Participants watched video clips and images designed to trigger emotional responses. After the recording of EEG data, multiple EEG descriptors were processed to extract key features and these were transformed into visual representations, which were then analyzed using machine learning frameworks such as convolutional neural networks, for automatic detection of distinct patterns in how the patients processed emotions compared to the healthy group. This processing enabled the highly accurate differentiation between patients and healthy controls.

Key EEG descriptors used include spectral power vectors and common spatial patterns. Spectral power vectors capture the power distribution across various frequency bands, which are known to correlate with emotional states. Common spatial patterns enhance interclass discriminability by maximizing variance for one class while minimizing it for another, allowing for better classification of EEG signals.

As the researchers continue refining EEG-based techniques, emotional brain monitoring has the potential to become a widespread clinical tool for Parkinson's diagnosis. The study demonstrates the promise of combining neurotechnology, AI and affective computing to provide objective neurological health assessments.

Ravikiran Parameshwara, Soujanya Narayana, Murugappan Murugappan, Ibrahim Radwan, Roland Goecke, Ramanathan Subramanian.
Exploring Electroencephalography-Based Affective Analysis and Detection of Parkinson's Disease.
Intell Comput. 2024;3:0084. doi: 10.34133/icomputing.0084

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...