IBM Helps Italian Orthopedic Institute Perform Deep Analytics to Treat Rare Skeletal Diseases

IBMIBM (NYSE: IBM)announced that its Research scientists are working with the Rizzoli Orthopedic Institute, in Bologna, Italy, to use information technology to better address treatment and research for rare genetic skeletal diseases.

Scientists from the two organizations are collaborating on a system called BioMIMS - short for BioMedical Imaging Management Solution - which integrates different types of medical data such as images, phenotype data, and genomic data. The system will enable advanced analytics on family trees that are dynamically created by the system to correlate between patients who show similar signs of the disease.

As scientists gain insight into genetic diseases at the molecular level, the critical role played by family history is becoming more apparent at all levels of treatment. However, until now, there has been no complete system for easily collecting, classifying and analyzing family histories for patients suffering from hereditary skeletal diseases like single and multiple exostoses. Unfortunately, most of this information traditionally sits in different hospitals and databases, and in different formats.

The new technology being developed by IBM and the Rizzoli Institute, will enable doctors to call upon all information related to a hereditary disease - including genetic information, observations studied, and imaging data from the perspective of the treatment history for any family members - so diagnosis and treatment becomes faster, less expensive, and more personalized. The project is scheduled to be completed in mid to late 2010.

The system will also build family history records, collect and classify, allowing research into advanced pedigree analytics. Because the disease is hereditary, it's critical to have access to data for all patients that are connected to the same pedigree. For example, when a child is being diagnosed, it's vital for physicians to see observations and clinical/genomic information from the parents, aunts, uncles, and other close relatives. The new system, from IBM Research - Haifa, will take the pedigrees and automatically assign them to groups based on common characteristics. These groupings have the potential to help doctors identify new research directions to better understand the correlation between genotype and the observable characteristics (phenotype) of the disease.

"BioMIMS will provide us with access to an invaluable collection of information so we can compare data to the records obtained from other patients and family members," noted Luca Sangiorgi, Manager of Medical Genetics at Rizzoli. "This holds the promise of significantly deepening our clinical knowledge about rare skeletal diseases, helping us diagnose and treat individual patients more accurately. Bridging the two worlds of information technology and healthcare will help lead the way towards new answers and new cures."

"This project demonstrates how new information technology solutions are allowing medical personal to make more accurate diagnoses and select treatment programs that have a much higher potential for success," noted Boaz Carmeli, manager of IT for healthcare and Life Science group at IBM Research Haifa. "Integrating information from various sources, and realizing the vision of interoperability and cooperation between healthcare organizations, is a surefire key to smarter healthcare solutions and better insight into the treatment of diseases."

The Rizzoli Orthopedic Institute is the second largest institute in the world for the study of rare skeletal diseases. Established in 1896 as a specialized hospital for orthopedics and traumatology, it evolved into a musculoskeletal center that distinguishes itself through pioneering clinical and research advancements. Physicians at the Institute see about 150,000 patients and perform about 18,000 surgeries annually.

IBM's track record of improving healthcare through scientific achievements and collaboration with healthcare companies dates back to the 1950s. In the last decade, IBM has developed a national digital mammography archive with the University of Pennsylvania; developed a clinical trial participant system with the Mayo Clinic; collaborated with Scripps to understand how influenza viruses mutate and proactively develop treatments; collaborated with European universities to develop better methods to decide on antiretroviral therapies for HIV; launched the World Community Grid, which has done projects on cancer, aids, dengue fever; and much more.

For more about the Rizzoli Orthopedic Institute, see www.ior.it.

For more information about IBM, visit www.ibm.com/research.

Related news articles:

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

Great Start for Ideas and Innovations: D…

8 - 10 April 2025, Berlin, Germany. From 15 October to 15 November 2024, the DMEA invites experts from business, science, politics and practice to actively participate in shaping the congress...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...