COVID-19 High Performance Computing Consortium Enters New Phase Focused on Helping Researchers to Identify Potential Therapies for Patients

IBMThe COVID-19 High Performance Computing (HPC) Consortium, a unique public-private effort to make supercomputing power available to researchers working on projects related to COVID-19, announced that it has entered into a new phase of operation focused on helping researchers to identify potential near term therapies for patients afflicted by the virus.

In this new phase, the Consortium plans to sharpen its focus on research projects that hold the potential to help improve patient outcomes within a six-month timeframe. This transition is due in part to the fact that there is now a greater volume of COVID-19 data available, creating more possibilities to potentially help patients than when the Consortium was launched in March 2020.

Created by IBM, The White House, and the US Department of Energy, the HPC Consortium brings together computing resources, software and services to help researchers everywhere better understand COVID-19, its treatments and potential cures. The Consortium has 43 members and has received more than 175 research proposals from researchers in more than 15 countries.

In its second phase of operation, the Consortium is particularly, though not exclusively, interested in projects focused on:

  • Understanding and modeling patient response to the virus using large clinical datasets
  • Learning and validating vaccine response models from multiple clinical trials
  • Evaluating combination therapies using repurposed molecules
  • Epidemiological models driven by large multi-modal datasets

"In just eight months, we've brought together an unprecedented scale of computing power to support COVID-19 research, and dozens of projects have already utilized these resources," said Dario Gil, Director of IBM Research. "At this stage, the Consortium partners believe that our combined computing resources now hold the potential to benefit patients in the near-term, as well as offering the potential for longer-term scientific breakthroughs."

"The Department of Energy is proud to play a significant role towards ending COVID-19," said Under Secretary for Science Paul Dabbar. "The second phase of the COVID-19 High Performance Computing Consortium can potentially provide tangible results to those affected by the virus, and we look forward to delivering these results to the American people."

Since its launch, the HPC Consortium has attracted new members from industry, government and academia worldwide. As a result, the Consortium's computing capacity has almost doubled to 600 petaflops, from 330 petaflops in March. Together, the Consortium has helped support more than 90 research projects including:

  • Understanding How Long Breath Droplets Linger: This research from a team at Utah State University simulated the dynamics of aerosols indoors, offering insight into how long breath droplets linger in the air. They found that droplets from breathing linger in the air much longer than previously thought, due to their small size when compared to droplets from coughing and sneezing.
  • Understanding How COVID-19 Impacts Different Populations Research from a team at Iowa State University on so-called orphan genes could help better understand why African Americans are more vulnerable to COVID-19. They found that a little-studied gene, F8A2, is expressed more in African Americans than European Americans in every tissue studied. Since the gene is believed to be involved in endosome mobility, this could affect COVID-19 infection.
  • Researching Drug Repurposing For Potential Treatments: A project from a team at Michigan State University screened data from about 1,600 FDA-approved drugs to see if there are possible combinations that could help treat COVID-19. They found promise in at least two FDA-approved drugs: proflavine, a disinfectant against many bacteria, and chloroxine, another antibacterial drug.
  • Examining the Potential of Indian Medicinal Plants: Research from India's Novel Techsciences screened plant-derived natural compounds from 55 Indian medicinal plants to identify compounds with anti-viral properties that could be used against eight SARS-CoV-2 proteins. They found that phytochemicals from plants Withania somnifera and Azadirachta indica show multi-potency against different coronavirus proteins, meaning that they could help fight multi-drug resistance that may arise as the virus evolves

About the HPC Consortium

The COVID-19 High Performance Computing (HPC) Consortium, https://covid19-hpc-consortium.org, is a unique private-public effort spearheaded by the White House Office of Science and Technology Policy, the U.S. Department of Energy and IBM (NYSE: IBM) to bring together federal government, industry, and academic leaders who are volunteering free compute time and resources on their world-class machines.

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...