Open Call SC1-DTH-01-2019: Big Data and Artificial Intelligence for Monitoring Health Status and Quality of Life after the Cancer Treatment

European CommissionCurrently available methods and strategies for diagnosis and treatment of cancer help clinicians continuously improve quality of care and prevent cancer deaths in the population. Accurate risk assessment, availability of genetic tests, timely diagnosis and effective treatment has created the impression of cancer being a chronic disease that can be cured. However, often rather aggressive treatment, psychological stress (anxiety and depression) can cause physical and psychological problems that may cause long-term after-cure consequences such as similar or other types of cancer, other types of (chronic) diseases and affect the quality of life of a patient. Therefore, the importance of addressing and, if possible, preventing long-term effects of cancer treatment is growing. In addition to patient-reported outcomes such as functional status, symptoms intensity and frequency, multiple domains of well-being and overall satisfaction with life, the use of big data can bring valuable information for monitoring health status and quality of life after the cancer treatment. Big Data can provide new opportunities to define statistical and clinical significance, but present also challenges as it requires specific analytical approaches.

Scope

Proposals should focus and deliver on how to better acquire, manage, share, model, process and exploit big data using, if appropriate, high performance computing to effectively monitor health status of individual patients, provide overall actionable insights at the point of care and improve quality of life after the cancer treatment. Relevant solutions include for example systems for determining and monitoring (taking also in account gender differences) the combined effects of cancer treatment, environment, lifestyle and genetics on the quality of life, enabling early identification of effects that can cause development of new medical conditions and/or impair the quality of life. Proposals preferably address relevant health economic issues, use patient reported outcome and experience measures (PROMs and PREMs) and take into account the relevant social aspects of health status and quality of life after cancer treatment. Integrated solutions should include suitable approaches towards security and privacy issues.

Information can be collected from traditional sources of health data (cohorts, comprehensive electronic health records or clinical registries, incl. genetic data, validated biomarkers for remission), from new sources of health data (mobile health apps and wearables) and from sources that are usually created for other purposes such as environmental data.

It is important to assure ethical aspects of data, confidentiality, and anonymity of data transfer and engagement of those who collect / code such data in its analysis and interpretation, in order to avoid misinterpretation and inappropriate conclusions by using proper annotation methodologies of the data. Involvement of those who work within healthcare systems, patients, family and relatives, and the general public is needed.

The Commission considers that proposals requesting a contribution from the EU of between EUR 3 and 5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts. Participation of SMEs is encouraged.

Expected Impact

The proposal should provide appropriate indicators to measure its progress and specific impact in the following areas:
  • Mapped comprehensive big data in a reachable and manageable way by applying principles for sharing and reusability, creating a network of knowledge by linking translation tools, heterogeneous data sources and biomedical texts for monitoring health status and quality of life after the cancer treatment;
  • Emerging data driven analytics and advanced simulation methods to study causal mechanisms and improve forecasts of ill-health, identification of disease trajectories and relapse;
  • Better and faster means of high quality response to prevent or timely address development of new medical conditions and/or improve the quality of life;
  • Better knowledge for improved patient counselling as well as to improve follow-up of patients;
  • Novel information on health maintenance, onset and course of medical conditions with a view to optimise prevention and treatment;
  • Evidence base for the development of policy strategies for prevention, early diagnosis, therapies as well as addressing health inequalities, support to patient registries at national level;
  • Improved quality of life after cancer treatment, strengthening personal confidence and enhancing employability;
  • Preventative strategies are established which have a real effect of reducing the occurrence of health disorders and co-morbidities associated with cancer treatment.

Planned opening date: 16 October 2018

Deadline: 24 April 2019 17:00:00

Deadline Model: single-stage

Type of action: RIA Research and Innovation action

For topic conditions, documents and submission service, please visit:
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sc1-dth-01-2019.html

PS: Find your partners or consortia preparing a project proposal
If you need help to identify a potential partner with particular competences, facilities or experience, please join and explore (HEALTH IT) SPACE www.healthitspace.eu.

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...