Open Call HORIZON-JU-IHI-2022-03-05: Digital Health Technologies for the Prevention and Personalised Management of Mental Disorders and their Long-Term Health Consequences

European CommissionMental health disorders represent an area of severe unmet public health need. This has been further negatively impacted by the COVID-19 pandemic, with a substantial increase in the number and severity of people affected for example by anxiety and depression, which places substantial pressures on already strained mental health care systems. People with mental disorders have a reduced life expectancy compared to the general population, and this is linked to a greater risk of developing a range of chronic physical conditions. The long-standing separation of psychiatry from other branches of medicine and the lack of specific training on this issue further contribute to the poor attention dedicated to management of comorbidities of mental health disorders.

Digital health technologies (DHT) applied via electronic devices such as wearable sensors, implanted equipment, and handheld instruments and smartphones have already shown significant promise for the prevention and disease management of chronic conditions (e.g. cardiovascular disease, diabetes, obesity). DHT, by making it possible to virtually perform medical activities that have traditionally been conducted in person, also have the potential to decrease the pressure on healthcare systems and their personnel. Thus, DHT might have the potential to address some of the challenges in the prevention, prediction, monitoring and personalised management of mental disorders and their long-term health consequences, as well as to tackle some of the organisational issues in providing mental health care3.

The scope of this topic is to investigate how DHT might positively impact the healthcare pathway for people with mental disorders.

Applicants should demonstrate how DHT may enable:

  • better prevention and prediction of disorder onset or relapse;
  • better disease management;
  • tackling comorbidities;
  • addressing long-term health consequences (such as cardiovascular disease or diabetes).

The choice of the specific mental disorder should be justified based on unmet public health need, its impact on quality of life of people with mental disorders and their families/caregivers as well as the feasibility and preliminary evidence available on the use and value of DHT.

To contribute to breaking the silos between psychiatry and other medical branches and better address the impact of co-morbidities in people with mental disorders, applicants should consider relevant co-morbidity/ies where DHT data, learnings and technologies are already available and can be further developed/applied to mental disorders. Co-morbidities can significantly exacerbate mental health disorders, impacting quality of life and the development of long-term health consequences The choice of comorbidy/ies must therefore be justified accordingly.

Ways of decreasing the burden on caregivers and families should be considered, and applicants should actively engage these actors as well as the people with mental disorders in addressing critical issues and research questions, including about (sustained) engagement with DHT. Consortia should propose ways to foster the future integration of digital and clinical mental healthcare, as well as how DHT might enhance the outcomes of interventions by social and healthcare professionals while decreasing the burden on the healthcare system. Applicants should adequately describe how they plan to measure such burden.

Resources and learnings from previous initiatives at European and national level (Innovative Medicines Initiative funded4 among others) should be taken into consideration.

Applicants should aim to deliver robust evidence on how DHT may be:

  • made easy to adopt and use in a sustained way for both people with mental disorders, their families/caregivers and health and care providers;
  • effectively incorporated into clinical research and in clinician workflows.

Early engagement with regulators should be sought to ensure the future acceptance and usability of the results for example through scientific advice, qualification advice or qualification opinion.

Applicants are expected to implement activities to achieve all expected outcomes.

Applicants are expected to consider allocating appropriate resources to explore synergies with other relevant initiatives and projects.

Opening date: 13 December 2022

Deadline: 15 March 2023 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON Action Grant Budget-Based [HORIZON-AG]

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-ju-ihi-2022-03-05

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...