Open Call HORIZON-JU-IHI-2022-03-05: Digital Health Technologies for the Prevention and Personalised Management of Mental Disorders and their Long-Term Health Consequences

European CommissionMental health disorders represent an area of severe unmet public health need. This has been further negatively impacted by the COVID-19 pandemic, with a substantial increase in the number and severity of people affected for example by anxiety and depression, which places substantial pressures on already strained mental health care systems. People with mental disorders have a reduced life expectancy compared to the general population, and this is linked to a greater risk of developing a range of chronic physical conditions. The long-standing separation of psychiatry from other branches of medicine and the lack of specific training on this issue further contribute to the poor attention dedicated to management of comorbidities of mental health disorders.

Digital health technologies (DHT) applied via electronic devices such as wearable sensors, implanted equipment, and handheld instruments and smartphones have already shown significant promise for the prevention and disease management of chronic conditions (e.g. cardiovascular disease, diabetes, obesity). DHT, by making it possible to virtually perform medical activities that have traditionally been conducted in person, also have the potential to decrease the pressure on healthcare systems and their personnel. Thus, DHT might have the potential to address some of the challenges in the prevention, prediction, monitoring and personalised management of mental disorders and their long-term health consequences, as well as to tackle some of the organisational issues in providing mental health care3.

The scope of this topic is to investigate how DHT might positively impact the healthcare pathway for people with mental disorders.

Applicants should demonstrate how DHT may enable:

  • better prevention and prediction of disorder onset or relapse;
  • better disease management;
  • tackling comorbidities;
  • addressing long-term health consequences (such as cardiovascular disease or diabetes).

The choice of the specific mental disorder should be justified based on unmet public health need, its impact on quality of life of people with mental disorders and their families/caregivers as well as the feasibility and preliminary evidence available on the use and value of DHT.

To contribute to breaking the silos between psychiatry and other medical branches and better address the impact of co-morbidities in people with mental disorders, applicants should consider relevant co-morbidity/ies where DHT data, learnings and technologies are already available and can be further developed/applied to mental disorders. Co-morbidities can significantly exacerbate mental health disorders, impacting quality of life and the development of long-term health consequences The choice of comorbidy/ies must therefore be justified accordingly.

Ways of decreasing the burden on caregivers and families should be considered, and applicants should actively engage these actors as well as the people with mental disorders in addressing critical issues and research questions, including about (sustained) engagement with DHT. Consortia should propose ways to foster the future integration of digital and clinical mental healthcare, as well as how DHT might enhance the outcomes of interventions by social and healthcare professionals while decreasing the burden on the healthcare system. Applicants should adequately describe how they plan to measure such burden.

Resources and learnings from previous initiatives at European and national level (Innovative Medicines Initiative funded4 among others) should be taken into consideration.

Applicants should aim to deliver robust evidence on how DHT may be:

  • made easy to adopt and use in a sustained way for both people with mental disorders, their families/caregivers and health and care providers;
  • effectively incorporated into clinical research and in clinician workflows.

Early engagement with regulators should be sought to ensure the future acceptance and usability of the results for example through scientific advice, qualification advice or qualification opinion.

Applicants are expected to implement activities to achieve all expected outcomes.

Applicants are expected to consider allocating appropriate resources to explore synergies with other relevant initiatives and projects.

Opening date: 13 December 2022

Deadline: 15 March 2023 17:00:00 Brussels time

Deadline Model: single-stage

Type of action: HORIZON Action Grant Budget-Based [HORIZON-AG]

For topic conditions, documents and submission service, please visit:
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-ju-ihi-2022-03-05

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...