Why Standards are Key to Building Trust in AI

Opinion Article by Dean Mawson, Clinical Director and Founder, DPM Digital Health Consultancy.
There's considerable interest in the potential uses of AI in healthcare at the moment; but there is also concern about the possible risks that it could pose.

Challenges include questions about data privacy and algorithmic bias, how we can make sure that AI tools are subject to robust validation and testing processes, and how to make sure they are used safely in a clinical setting.

To address these issues, manufacturers will need to be transparent about their data models and the way their algorithms are trained and validated. There will also need to be more education and training for the people who procure and use these tools.

Building trust

However, that will only take us so far. Manufacturers are, understandably, keen to protect their intellectual property - and some AI operates as a 'black box' around which we can only see inputs and outputs.

At the same time, busy healthcare organisations, clinicians and patients need to understand the fundamentals, but are never going to be experts in such a complex area. So, how do we secure the adoption of AI in this environment, and make sure its risks are properly managed?

The key is going to be ‘trust’ which the Oxford English Dictionary defines as: 'a firm belief in the reliability, truth, or ability of someone or something'. And one way in which other sectors, from airlines to engineering and med tech, build trust is through regulation.

Few people in the world really understand how a plane is built or a nuclear power plant operates. Instead, we trust they are safe because they are highly regulated, and operate to well understood, international standards.

Standards for AI in healthcare

Since the Covid-19 pandemic, which saw a rapid acceleration in the take-up of health tech of all kinds, there has been growing interest in standards for AI in healthcare.

In the UK, the starting point is DCB0160 and DCB0129, which date back 15 years to a programme to encourage health tech vendors and their customers to take a 'safety approach' to the design, development, deployment and use of digital health systems.

DCB0160 requires trusts to risk assess any customisations and reconfigurations, to determine whether they are good to go live and DCB0129 requires vendors to carry out a risk assessment on their product.

Both should be very familiar, as compliance with these standards is mandatory under the Health and Social Care Act 2012. Then, we have BS ISO/IEC 30440 and BS ISO/IEC 42001.

These are international standards developed by experts from 50 countries, led by the British Standards Institution, and they provide a validation framework and a management system for AI in healthcare.

BS ISO/IEC 30440 is designed to help manufacturers to risk assess medical technology using machine learning and to mitigate any hazards found. While BS ISO/IEC 42001 is designed to help organisations to create a management system to implement and govern this technology effectively.

User friendly - up to a point!

The BSI and its experts have worked hard to make these standards user-friendly. For international standards, they are written in lay-person’s terms and come with examples for some of the clauses, indicating how to apply them.

Even so, it's been recognised that adopting these standards is not straightforward, and the University of York has been commissioned to develop a safety assurance framework to help manufacturers and deploying organisations.

This is underpinned by an established process known as the assurance of machine learning for use in autonomous systems, or AMLAS. Effectively, the University is working out how to apply this to healthcare.

Challenges to using standards in practice

So, we have some standards for the development and deployment of health IT systems generally and AI tools specifically, and the start of a structure for applying them, but there's no doubt that we are at the start of a journey.

As we learn more about AI in healthcare, we're going to need to revise the standards and review our governance arrangements; and that’s a positive; it’s how we move forward.

Despite this, there are obstacles on the road. Because these standards support a safety approach, they apply to both manufacturers and healthcare organisations (and also clinicians and patients, who have their own part to play in using and interpreting these tools safely).

In theory, that means the cost of compliance should be borne by both manufacturers and users; but in practice there is considerable push-back from healthcare organisations against being asked to pay for something that is not mandatory.

Mandation may be coming. The UK government has a roadmap for the development of an effective AI assurance ecosystem, and the healthcare AI standards are part of it.

The EU has also adopted landmark legislation to create a legal framework for the development and adoption of AI, that covers data quality, transparency, human oversight, and accountability; and manufacturers who operate beyond the UK are not going to be able to ignore it.

Time for a proactive approach

We also need to make sure that healthcare organisations are proactive about using these standards and set-up to work with them.

That means making sure they have well trained, competent, clinical safety officers in place, but also making sure they are working within safety management systems that include everyone, from board to ward, in the design, development and deployment process.

I'm planning to write more about this later in the year. Meantime, the key point is that this is all about trust. If we want to build a healthcare AI industry in the UK, we need trust. If we want organisations (and the clinicians working in them, and the patients relying on them) to benefit from that industry, we need trust.

Raising awareness of the standards that are available for the development and adoption of digital health systems and AI tools is vital because they give us a structure and process on which to build that trust.

Everybody can see what has been done to make sure the development and deployment of these new technologies is ethical and clinically safe, and that will build confidence in the ability of AI to deliver a more accessible, efficient, and high-quality NHS.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...