p-medicine

Medicine is undergoing a revolution that is transforming the nature of healthcare from reactive to preventive. The changes are catalyzed by a new systems approach to disease which focuses on integrated diagnosis, treatment and prevention of disease in individuals. This will replace our current mode of medicine over the coming years with a personalized predictive treatment. While the goal is clear, the path is fraught with challenges. P-medicine brings together international leaders in their fields to create an infrastructure that will facilitate this translation from current practice to personalized medicine. In achieving this objective p-medicine has formulated a coherent, integrated work plan for the design, development, integration and validation of technologically challenging areas of today. Our emphasis is on formulating an open, modular framework of tools and services, so that p-medicine can be adopted gradually, including efficient secure sharing and handling of large personalized data sets, enabling demanding Virtual Physiological Human (VPH) multi-scale simulations (in silico oncology), building standards-compliant tools and models for VPH research, drawing on the VPH Toolkit and providing tools for large-scale, privacy-preserving data and literature mining, a key component of VPH research. We will ensure that privacy, non-discrimination, and access policies are aligned to maximize protection of and benefit to patients. The p-medicine tools and technologies will be validated within the concrete setting of advanced clinical research. Pilot cancer trials have been selected based on clear research objectives, emphasising the need to integrate multilevel datasets, in the domains of Wilms tumour, breast cancer and leukaemia. To sustain a self-supporting infrastructure realistic use cases will be built that will demonstrate tangible results for clinicians. The project is clinically driven and promotes the principle of open source and open standards.

For further information, please visit:
http://www.p-medicine.eu

Project co-ordinator:
Universität des Saarlandes

Partners:

  • CUSTODIX NV
  • THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
  • SWISS INSTITUTE OF BIOINFORMATICS
  • ECANCERMEDICALSCIENCE AG
  • NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
  • INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS
  • A. PERSIDIS & SIA OE
  • GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
  • HEINRICH-HEINE-UNIVERSITAET DUESSELDORF
  • UNIVERSIDAD POLITECNICA DE MADRID
  • IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD
  • FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS
  • FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
  • PHILIPS ELECTRONICS NEDERLAND B.V.
  • UNIVERSITY COLLEGE LONDON
  • EUROPEAN RESEARCH AND PROJECT OFFICE GMBH
  • CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL
  • INSTYTUT CHEMII BIOORGANICZNEJ PAN
  • ISTITUTO EUROPEO DI ONCOLOGIA SRL

Timetable: from 01/2011 to 01/2015

Total cost: € 18.480.000

EC funding: € 13.330.000

Programme Acronym: FP7-ICT

Subprogramme Area: ICT-2009.5.3 Virtual Physiological Human

Contract type: Collaborative project (generic)

Related news articles:

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...