DIAdvisor

The DIAdvisor is a large scale- integrating project (IP) aiming at development of a prediction based tool which uses past and easily available information to optimise the therapy of type I and developed type II diabetes.

The DIAdvisor does not depend on specific sensor technologies and technologies like standard strip sensing, minimally invasive continuous glucose sensors and non-invasive methods.

For safety reason, the DIAdvisor system will be able to self-assess the confidence of its proposed decisions. For safety reasons as well as for the sake of therapy improvements the system connects and provides information and trends to the Health Care Provider.

Glucose prediction is difficult and requires advanced science. This can be achieved only by a well-balanced group of eminent experts including academics, clinicians, user representatives and leading companies. This includes physiological modelling, identification theory, control theory, medical device technology, risk management theory, sensor science and user understanding.

The expected impact of DIAdvisor will be improved diabetes control and quality of life in large populations of insulin treated patients, leading to fewer diabetic complications and lower Health Care costs. Moreover, the project will constitute a valuable opportunity for European companies to build up a special know-how leading products that profoundly and positively impacts the lives of millions with other indications than diabetes.

For further information, please visit:
http://www.diadvisor.eu/

Project co-ordinator:
Novo Nordisk A/S (Denmark)

Partners:

  • Novo Nordisk A/S (Denmark),
  • Johannes Kepler Universität Linz (Austria),
  • Lunds Universitet (Sweden),
  • Universita Degli Studi di Padova (Italy),
  • Centre Hospitalier Regional Universitaire de Montpellier (France),
  • Toumaz Technology Ltd (UK),
  • Sensor Technology and Devices Ltd (UK),
  • Ondalys SARL (France),
  • Romsoft SRL (Romania),
  • Institut Klinicke a Experimentalni Mediciny (Czech Republic),
  • RICAM, Österreichische Akademie der Wissenschaften (Austria),
  • Rambøll Danmark A/S (Denmark),
  • Federation Internationale du Diabete Region Europe (Belgium)

Timetable: from 03/2008 – to 02/2012

Total cost: € 9.284.061

EC funding: € 7.099.992

Programme Acronym: FP7-ICT

Subprogramme Area: Personal health systems for monitoring and point-of-care diagnostics

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...