PSIP

Adverse Drug Events (ADE) due to product safety problems, and medication errors due to human factors (HF) are a major Public Health issue. They endanger the patients¿ safety and originate considerable extra hospital costs. Healthcare ICT applications should help reducing the prevalence of preventable ADE, by providing healthcare professionals and patients with relevant knowledge (guidelines, recommendations, etc.).

But their efficiency is impeded by two major drawbacks:

  • lack of reliable knowledge about ADE
  • poor ability of ICT solutions to deliver contextualised knowledge focused on the problem at hand, aggravated by a poor consideration of causative HF.

The objective of the project Patient Safety through Intelligent Procedures in Medication (PSIP) is (1) to facilitate the systematic production of epidemiological knowledge on ADE and (2) to ameliorate the entire medication cycle in a hospital environment.

The first sub-objective, SO, is to innovatively produce knowledge on ADE: to know, as exactly as possible, per hospital, their number, type, consequences and causes, including HF. Data Mining of the structured hospital data bases, and Semantic Mining of Data Collections of free-texts (letters, reports), will give a list of observed ADEs, with frequencies and probabilities, thus giving a better understanding of potential risks.

The second SO is to develop a set of innovative knowledge based on the mining results and to deliver a contextualised knowledge fitting the local risk parameters, in the form of alerts and decision support functions. This knowledge will be implemented in a PSIP-platform independently of existing ICT applications. These applications will connect to the platform to access and integrate the knowledge in their local system. The design and development cycle of the PSIP solution will be HF oriented.

Dissemination plans will be developed taking into account other uses (medical devices, primary and tertiary Healthcare).

For further information, please visit:
http://www.psip-project.eu

Project co-ordinator:
CENTRE HOSPITALIER REGIONAL ET UNIVERSITAIRE DE LILLE

Partners:

  • KITE SOLUTIONS S.N.C. DI DUNNE CATHERINE E C.
  • AALBORG UNIVERSITET
  • ORACLE FRANCE SAS
  • REGION HOVEDSTADEN
  • IBM DANMARK A/S
  • CENTRE HOSPITALIER DE DENAIN
  • VIDAL S.A.
  • IDEEA ADVERTISING SRL
  • EVALAB
  • MEDASYS SA
  • CENTRE HOSPITALIER UNIVERSITAIRE DE ROUEN
  • ARISTOTLE UNIVERSITY OF THESSALONIKI
  • UMIT - PRIVATE UNIVERSITAET FUER GESUNDHEITSWISSENSCHAFTEN, MEDIZINISCHE INFORMATIK UND TECHNIK GESELLSCHAFT MBH

Timetable: from 01/2008 – to 04/2011

Total cost: € 9.946.770

EC funding: € 7.268.981

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...