IMPPACT

IMPPACT (Image-based multi-scale physiological planning for ablation cancer treatment) will develop an intervention planning and monitoring application for Radiofrequency Ablation (RFA) of malignant liver tumours. RFA is a minimally invasive form to treat cancer without open surgery, by placing a needle inside the malignancy and destroying it through intensive heating. Though the advantages of this approach are obvious, the intervention is currently hard to plan, almost impossible to monitor or assess, and therefore is not the first choice for treatment.

IMPPACT will develop a physiological model of the liver and simulate the intervention's result, accounting for patient specific physiological factors. Gaps in the understanding of particular aspects of the RFA treatment will be closed by multi-scale studies on cells and animals. New findings will be evaluated microscopically and transformed into macroscopic equations. The long-established bio-heat equation will be extended to incorporate multiple scales. Validation will be performed at multiple levels. Images from ongoing patient treatment will be used to cross check validity for human physiology. Final validation will be performed at macroscopic level through visual comparison of simulation and treatment results gathered in animal studies and during patient treatment.

This extensive validation together with a user-centred software design approach will guarantee suitability of the solution for clinical practice. The consortium consists of two Hospitals, three Universities, one Research Institute and one industrial SME. The final project deliverables will be the patient specific intervention planning system and an augmented reality training simulator for the RFA intervention.

For further information, please visit:
http://imppact.icg.tugraz.at/

Project co-ordinator:
Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. (Germany)

Partners:

  • NUMA Engineering Services Ltd (Ireland)
  • Universität Leipzig (Germany)
  • Chancellor, Masters and Scholars of the University of Oxford (United Kingdom)
  • Medizinische Universität Graz (Austria)
  • TKK - Teknillinen korkeakoulu (Finland)
  • Technische Universität Graz (Austria)

Timetable: from 09/2008 - to 08/2011

Total cost: € 4.550.000

EC funding: € 3.460.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...